Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiichiro Kawamura is active.

Publication


Featured researches published by Kiichiro Kawamura.


Archive | 2010

Submarine Mass Movements and Their Consequences

Yasuhiro Yamada; Kiichiro Kawamura; Ken Ikehara; Yujiro Ogawa; Roger Urgeles; David C. Mosher; Jason D. Chaytor; Michael Strasser

Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, near shore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979 (Dan et al. 2007), Finneidfjord in 1996 (e.g., L’Heureux et al., this volume, Steiner et al., this volume), Papua-New Guinea in 1998 (Tappin et al. 2001), Stromboli in 2002 (Chiocci et al. 2008), and the 2006 and 2009 failures in the submarine cable network around Taiwan (Hsu et al. 2008). The Great East Japan Earthquake of March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami as shown in Fryer et al. (2004). Given that 30% of the World’s population lives within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. In addition, the deposits resulting from such processes provide-various types of constraints to offshore development (Shipp et al. 2004), and have significant implications for non-renewable energy resource exploration and production (Weimer and Shipp 2004; Beaubouef and Abreu 2010).


Geology | 2013

Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake

Kazuno Arai; Hajime Naruse; Ryo Miura; Kiichiro Kawamura; Ryota Hino; Yoshihiro Ito; Daisuke Inazu; Miwa Yokokawa; Norihiro Izumi; Masafumi Murayama; Takafumi Kasaya

We show the first real-time record of a turbidity current associated with a great earthquake, the Mw 9.0, 2011 Tohoku-Oki event offshore Japan. Turbidity current deposits (turbidites) have been used to estimate earthquake recurrence intervals from geologic records. Until now, however, there has been no direct evidence for large-scale earthquakes in subduction plate margins. After the 2011 Tohoku-Oki earthquake and tsunami, an anomalous event on the seafloor consistent with a turbidity current was recorded by ocean-bottom pressure recorders and seismometers deployed off Sendai, Japan. Freshly emplaced turbidites were collected from a wide area of seafloor off the Tohoku coastal region. We analyzed these measurements and sedimentary records to determine conditions of the modern tsunamigenic turbidity current. We anticipate our discovery to be a starting point for more detailed characterization of modern tsunamigenic turbidites, and for the identification of tsunamigenic turbidites in geologic records.


Scientific Reports | 2013

Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake

Kazumasa Oguri; Kiichiro Kawamura; Arito Sakaguchi; Takashi Toyofuku; Takafumi Kasaya; Masafumi Murayama; Katsunori Fujikura; Ronnie N. Glud; Hiroshi Kitazato

In situ video observations and sediment core samplings were performed at two hadal sites in the Japan Trench on July, 2011, four months after the Tohoku–Oki earthquake. Video recordings documented dense nepheloid layers extending ~30–50 m above the sea bed. At the trench axis, benthic macrofauna was absent and dead organisms along with turbid downslope current were observed. The top 31 cm of sediment in the trench axis revealed three recent depositions events characterized by elevated 137Cs levels and alternating sediment densities. At 4.9 km seaward from the trench axis, little deposition was observed but the surface sediment contained 134Cs from the Fukushima Dai–ichi nuclear disaster. We argue that diatom blooms observed by remote sensing facilitated rapid deposition of 134Cs to hadal environment and the aftershocks induced successive sediment disturbances and maintained dense nepheloid layers in the trench even four months after the mainshock.


Geological Society of America Bulletin | 2009

Structural architecture and active deformation of the Nankai Accretionary Prism, Japan: Submersible survey results from the Tenryu Submarine Canyon

Kiichiro Kawamura; Yujiro Ogawa; Ryo Anma; Shunji Yokoyama; Shunsuke Kawakami; Yildirim Dilek; Gregory F. Moore; Satoshi Hirano; Asuka Yamaguchi; Tomoyuki Sasaki; Yk Leg; Yk Shipboard Scientific Parties

Two research cruises that deployed submersible surveys were undertaken along the Tenryu Submarine Canyon to directly observe the structural architecture of the eastern Nankai Accretionary Prism off the coast of southern Japan. The surveys have demonstrated that the accreted sediments are strongly deformed turbidite sequences that occur in repeated thrust-anticline structures. From the leading edge of the prism near the trench toward the arc, the following deformation zones have been identified within the prism: Frontal Thrust zone, Prism Toe zone, Imbricate Thrust zone, and Tokai Thrust zone (or out-of-sequence thrust or OOST zone). The Frontal Thrust zone is characterized by debris deposits within the hanging wall that have an age of 0–0.43 Ma, as determined from radiolarian biostratigraphy. The Prism Toe zone is characterized by unconsolidated turbidite sequences that are 1.98–3.4 Ma; these sequences are cut by normal and thrust faults. The Imbricate Thrust zone includes consolidated muddy layers and unconsolidated sandy layers that contain numerous fracture cleavages. The OOST zone consists of highly deformed consolidated sediments, ranging in age from 0.18 to 1.03 Ma. From the Prism Toe zone to the Imbricate Thrust zone, the uniaxial compressive strength increases gradually from 0.5–3.0 to 1.0–6.0 MPa, while the anisotropy of magnetic susceptibility changes from oblate to prolate shapes, and porosity decreases from 40%–50% to 30%–50%. These data indicate that the eastern Nankai Accretionary Prism appears to have been deformed toward the Imbricate Thrust zone just south of the OOST. Stable isotope analyses of calcite veins and calcite cement of the sandstone samples from the Tokai Thrust zone have shown that fluid temperatures for calcite precipitation were 24–63 °C in the OOST zone. The occurrence of highly deformed and consolidated rocks within the Nankai Accretionary Prism likely resulted from tectonic transportation of deeply buried rocks along major out-of-sequence thrust faults, such as the Tokai OOST. We infer therefore that out-of-sequence thrust faults play a major role in transporting deeply buried, deformed rocks in accretionary prisms to the shallower depths and even to the seafloor during ongoing subduction.


Geology | 2013

A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake

Michael Strasser; Martin Kölling; C. dos Santos Ferreira; Hiske G Fink; Toshiya Fujiwara; Susann Henkel; Ken Ikehara; Toshiya Kanamatsu; Kiichiro Kawamura; Shuichi Kodaira; Miriam Römer; Gerold Wefer; Jamstec Cruise Mr E scientists

We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (∼27.7 km 2 ) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO 4 2– profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.


Journal of the Marine Biological Association of the United Kingdom | 2012

Assemblages of Harpacticoida (Crustacea: Copepoda) from the Ryukyu and Kuril Trenches, north-west Pacific Ocean

Tomo Kitahashi; Kiichiro Kawamura; Gritta Veit-Köhler; Roberto Danovaro; John Tietjen; Shigeaki Kojima; Motohiro Shimanaga

To examine the specific features of trench communities, spatial changes in the assemblages of harpacticoids were investigated at the family level around the Ryukyu Trench (the Ryukyu region) and Kuril Trench (the Kuril region). In the Ryukyu region, there were high average dissimilarities in the harpacticoid assemblages among the trench, trench slope and abyssal plain, indicating that the assemblage structures differ substantially between these topographic settings at the family level. Conversely, in the Kuril region, the average dissimilarities in harpacticoid assemblages between the trench and the trench slope and between the trench and the abyssal plain were lower than that between the slope and the abyssal plain. This result suggests that the hadal assemblage is a transition zone between the slope and the abyssal plain in this region. In addition, the analyses indicate that the composition of harpacticoid assemblages is influenced by the quantity of organic matter in the Ryukyu region, while sediment properties play a key role in the Kuril region. Comparisons of the assemblages between the two regions, however, revealed that the average dissimilarities between the trenches and between the abyssal plains were higher than that between the adjacent slopes. This result suggests that interchange among regions is difficult for deep-sea benthic animals, including harpacticoid copepods, likely due to the presence of physical barriers around trenches.


Scientific Reports | 2015

Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tohoku-Oki tsunami

Takashi Toyofuku; Pauline Duros; Christophe Fontanier; Briony Mamo; Sabrina Bichon; Roselyne Buscail; Gérard Chabaud; Bruno Deflandre; Sarah Goubet; Antoine Grémare; Christophe Menniti; Minami Fujii; Kiichiro Kawamura; K.A. Koho; Atsushi Noda; Yuichi Namegaya; Kazumasa Oguri; Olivier Radakovitch; Masafumi Murayama; Lennart Jan de Nooijer; Atushi Kurasawa; Nina Ohkawara; Takashi Okutani; Arito Sakaguchi; Frans Jorissen; Gert-Jan Reichart; Hiroshi Kitazato

On March 11th, 2011 the Mw 9.0 2011 Tōhoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.


Archive | 2010

Redistribution of Sediments by Submarine Landslides on the Eastern Nankai Accretionary Prism

Kiichiro Kawamura; Toshiya Kanamatsu; Masataka Kinoshita; Saneatsu Saito; Tadahiro Shibata; Keiko Fujino; A. Misawa; K. C. Burmeister

During a recent survey of the Nankai Trough region by JAMSTEC R/V KAIYO, ten piston cores were collected along a NW-SE transect through the Shikoku Basin, Kashinozaki Knoll, and Nankai Trough areas. The purpose was to demonstrate the influence of landslide processes on sediment distribution patterns on an accretionary prism. The Shikoku Basin is a flat abyssal plane covered by ca. 1 m thick hemipelagic mud, and underlain by a ca. 10 cm thick tuffaceous sand corresponding to the Aira-Tn tephra layer (25120 ± 270 yr. B.P.). The sedimentation rates in the Shikoku Basin are 3–4 cm/ky. At least three submarine landslide scars are observable on Kashinozaki Knoll. The abyssal plane surrounding the Kashinozaki Knoll is covered by a characteristic yellowish pumiceous mud intercalated with the hemipelagic mud. Immediately below thelandslide scars, these pumiceous mud layers thicken. Pumiceous mud was likely derived from the flanks of the volcanic Kashinozaki Knoll. These scars and deposits suggest that submarine landslides redistributed material from the knoll to the basin by mass-wasting. More than six trench turbidite beds were observed in a sequence that overlies a submarine landslide deposit at the foot of the accretionary prism within the Nankai Trough. The geomorphology of the axial channel suggests that the flow of turbidite deposits along the axial channel was blocked by this submarine landslide deposit, forcing the flow path and gradient of the channel to re-establish itself. In this event, sediment ponding would occur upstream of the blockage, while the downstream portion of the axial channel would be starved of sediment.


Archive | 2014

Evidence for Mass Transport Deposits at the IODP JFAST-Site in the Japan Trench

Hiske G Fink; Michael Strasser; Miriam Römer; Martin Kölling; Ken Ikehara; Toshiya Kanamatsu; Dominik Dinten; Arata Kioka; Toshiya Fujiwara; Kiichiro Kawamura; Shuichi Kodaira; Gerold Wefer

Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary decollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ∼7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.


Archive | 2014

Characteristics of Magnetic Fabrics in Mass Transport Deposits in the Nankai Trough Trench Slope, Japan

Yujin Kitamura; Michael Strasser; Beth Novak; Toshiya Kanamatsu; Kiichiro Kawamura; Xixi Zhao

Submarine landslides are a potential risk to coastal areas all over the world. Studies of mass transport deposit (MTD) contribute to our understanding of the nature and process of submarine landslides. Scientific drilling provides material containing geological records of past landslide events. However, MTDs may not always be uniquely discernible by visual inspection. We applied magnetic fabric analysis to the drilled cores to examine the potential of magnetic fabrics for use in identifying MTDs. Among the sites drilled in the framework of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), in Japan, of the Integrated Ocean Drilling Program (IODP), multiple occurrences of MTDs were observed in the recovered cores. We focused on the slope sediments in the footwall of the megasplay fault at Sites C0008 and C0018. The shape parameter (T) and the orientation of the axes of magnetic ellipsoids are distinctively scattered in MTDs at Site C0018. Downward increments in the lineation parameter (L) near the bottom of the MTDs may result from shear localization near the basal sliding plane. This, in combination with visual observation, suggests cohesive mass flow. By contrast, the results from sediments previously described as mass transport complexes at Site C0008 showed the opposite trend, suggesting a different process during transportation; i.e. the mass transport body evolved to become a complete debris flow. Our results show that magnetic fabric analysis is potent for describing MTDs and their internal structures. This finding may extend the methodology for describing MTDs and add to the discussion of the dynamic formation process.

Collaboration


Dive into the Kiichiro Kawamura's collaboration.

Top Co-Authors

Avatar

Toshiya Kanamatsu

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Ikehara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takafumi Kasaya

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Arito Sakaguchi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kazumasa Oguri

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryo Anma

University of Tsukuba

View shared research outputs
Researchain Logo
Decentralizing Knowledge