Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiichiro Ueta is active.

Publication


Featured researches published by Kiichiro Ueta.


Journal of Medicinal Chemistry | 2010

Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus

Sumihiro Nomura; Shigeki Sakamaki; Mitsuya Hongu; Eiji Kawanishi; Yuichi Koga; Toshiaki Sakamoto; Yasuo Yamamoto; Kiichiro Ueta; Hirotaka Kimata; Keiko Nakayama; Minoru Tsuda-Tsukimoto

We discovered that C-glucosides 4 bearing a heteroaromatic ring formed metabolically more stable inhibitors for sodium-dependent glucose cotransporter 2 (SGLT2) than the O-glucoside, 2 (T-1095). A novel thiophene derivative 4b-3 (canagliflozin) was a highly potent and selective SGLT2 inhibitor and showed pronounced anti-hyperglycemic effects in high-fat diet fed KK (HF-KK) mice.


PLOS ONE | 2012

Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models.

Yin Liang; Kenji Arakawa; Kiichiro Ueta; Yasuaki Matsushita; Chiaki Kuriyama; T. Martin; Fuyong Du; Yi Liu; June Xu; Bruce R. Conway; Jamie Conway; David Polidori; Kirk Ways; Keith T. Demarest

Background Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM). Methods 14C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; 3H-2-deoxy-d-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RTG) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats. This study aimed to characterize the pharmacodynamic effects of canagliflozin in vitro and in preclinical models of T2DM and obesity. Results Treatment with canagliflozin 1 mg/kg lowered RTG from 415±12 mg/dl to 94±10 mg/dl in ZDF rats while maintaining a threshold relationship between BG and UGE with virtually no UGE observed when BG was below RTG. Canagliflozin dose-dependently decreased BG concentrations in db/db mice treated acutely. In ZDF rats treated for 4 weeks, canagliflozin decreased glycated hemoglobin (HbA1c) and improved measures of insulin secretion. In obese animal models, canagliflozin increased UGE and decreased BG, body weight gain, epididymal fat, liver weight, and the respiratory exchange ratio. Conclusions Canagliflozin lowered RTG and increased UGE, improved glycemic control and beta-cell function in rodent models of T2DM, and reduced body weight gain in rodent models of obesity.


Journal of Pharmacology and Experimental Therapeutics | 2015

Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

Takahiro Oguma; Keiko Nakayama; Chiaki Kuriyama; Yasuaki Matsushita; Kumiko Yoshida; Kumiko Hikida; Naoyuki Obokata; Minoru Tsuda-Tsukimoto; Akira Saito; Kenji Arakawa; Kiichiro Ueta; Masaharu Shiotani

The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus.


PLOS ONE | 2015

Beneficial Effects of Canagliflozin in Combination with Pioglitazone on Insulin Sensitivity in Rodent Models of Obese Type 2 Diabetes

Yoshinori Watanabe; Keiko Nakayama; Nobuhiko Taniuchi; Yasushi Horai; Chiaki Kuriyama; Kiichiro Ueta; Kenji Arakawa; Takaaki Senbonmatsu; Masaharu Shiotani

Background Despite its insulin sensitizing effects, pioglitazone may induce weight gain leading to an increased risk of development of insulin resistance. A novel sodium glucose co-transporter 2 (SGLT2) inhibitor, canagliflozin, provides not only glycemic control but also body weight reduction through an insulin-independent mechanism. The aim of this study was to investigate the combined effects of these agents on body weight control and insulin sensitivity. Methods Effects of combination therapy with canagliflozin and pioglitazone were evaluated in established diabetic KK-Ay mice and prediabetic Zucker diabetic fatty (ZDF) rats. Results In the KK-Ay mice, the combination therapy further improved glycemic control compared with canagliflozin or pioglitazone monotherapy. Furthermore, the combination significantly attenuated body weight and fat gain induced by pioglitazone and improved hyperinsulinemia. In the ZDF rats, early intervention with pioglitazone monotherapy almost completely prevented the progressive development of hyperglycemia, and no further improvement was observed by add-on treatment with canagliflozin. However, the combination significantly reduced pioglitazone-induced weight gain and adiposity and improved the Matsuda index, suggesting improved whole-body insulin sensitivity. Conclusions Our study indicates that combination therapy with canagliflozin and pioglitazone improves insulin sensitivity partly by preventing glucotoxicity and, at least partly, by attenuating pioglitazone-induced body weight gain in two different obese diabetic animal models. This combination therapy may prove to be a valuable option for the treatment and prevention of obese type 2 diabetes.


Journal of Pharmacology and Experimental Therapeutics | 2014

Analysis of the Effect of Canagliflozin on Renal Glucose Reabsorption and Progression of Hyperglycemia in Zucker Diabetic Fatty Rats

Chiaki Kuriyama; Jun Zhi Xu; Seunghun Lee; Jenson Qi; Hirotaka Kimata; Tetsuhiro Kakimoto; Keiko Nakayama; Yoshinori Watanabe; Nobuhiko Taniuchi; Kumiko Hikida; Yasuaki Matsushita; Kenji Arakawa; Akira Saito; Kiichiro Ueta; Masaharu Shiotani

Sodium–glucose cotransporter 2 (SGLT2) plays a major role in renal glucose reabsorption. To analyze the potential of insulin-independent blood glucose control, the effects of the novel SGLT2 inhibitor canagliflozin on renal glucose reabsorption and the progression of hyperglycemia were analyzed in Zucker diabetic fatty (ZDF) rats. The transporter activity of recombinant human and rat SGLT2 was inhibited by canagliflozin, with 150- to 12,000-fold selectivity over other glucose transporters. Moreover, in vivo treatment with canagliflozin induced glucosuria in mice, rats, and dogs in a dose-dependent manner. It inhibited apparent glucose reabsorption by 55% in normoglycemic rats and by 94% in hyperglycemic rats. The inhibition of glucose reabsorption markedly reduced hyperglycemia in ZDF rats but did not induce hypoglycemia in normoglycemic animals. The change in urinary glucose excretion should not be used as a marker to predict the glycemic effects of this SGLT2 inhibitor. In ZDF rats, plasma glucose and HbA1c levels progressively increased with age, and pancreatic β-cell failure developed at 13 weeks of age. Treatment with canagliflozin for 8 weeks from the prediabetic stage suppressed the progression of hyperglycemia, prevented the decrease in plasma insulin levels, increased pancreatic insulin contents, and minimized the deterioration of islet structure. These results indicate that selective inhibition of SGLT2 with canagliflozin controls the progression of hyperglycemia by inhibiting renal glucose reabsorption in ZDF rats. In addition, the preservation of β-cell function suggests that canagliflozin treatment reduces glucose toxicity via an insulin-independent mechanism.


American Journal of Physiology-endocrinology and Metabolism | 2014

Glucotoxicity targets hepatic glucokinase in Zucker diabetic fatty rats, a model of type 2 diabetes associated with obesity

Kiichiro Ueta; Tracy P. O'Brien; Gregory A. McCoy; Kuikwon Kim; Erin C. Healey; Tiffany D. Farmer; E. Patrick Donahue; Audree B. Condren; Richard L. Printz; Masakazu Shiota

A loss of glucose effectiveness to suppress hepatic glucose production as well as increase hepatic glucose uptake and storage as glycogen is associated with a defective increase in glucose phosphorylation catalyzed by glucokinase (GK) in Zucker diabetic fatty (ZDF) rats. We extended these observations by investigating the role of persistent hyperglycemia (glucotoxicity) in the development of impaired hepatic GK activity in ZDF rats. We measured expression and localization of GK and GK regulatory protein (GKRP), translocation of GK, and hepatic glucose flux in response to a gastric mixed meal load (MMT) and hyperglycemic hyperinsulinemic clamp after 1 or 6 wk of treatment with the sodium-glucose transporter 2 inhibitor (canaglifrozin) that was used to correct the persistent hyperglycemia of ZDF rats. Defective augmentation of glucose phosphorylation in response to a rise in plasma glucose in ZDF rats was associated with the coresidency of GKRP with GK in the cytoplasm in the midstage of diabetes, which was followed by a decrease in GK protein levels due to impaired posttranscriptional processing in the late stage of diabetes. Correcting hyperglycemia from the middle diabetic stage normalized the rate of glucose phosphorylation by maintaining GK protein levels, restoring normal nuclear residency of GK and GKRP under basal conditions and normalizing translocation of GK from the nucleus to the cytoplasm, with GKRP remaining in the nucleus in response to a rise in plasma glucose. This improved the livers metabolic ability to respond to hyperglycemic hyperinsulinemia. Glucotoxicity is responsible for loss of glucose effectiveness and is associated with altered GK regulation in the ZDF rat.


Journal of Pharmacology and Experimental Therapeutics | 2016

Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2.

Ryuichi Ohgaki; Ling Wei; Kazunori Yamada; Taiki Hara; Chiaki Kuriyama; Suguru Okuda; Kiichiro Ueta; Masaharu Shiotani; Shushi Nagamori; Yoshikatsu Kanai

Canagliflozin, a selective sodium/glucose cotransporter (SGLT) 2 inhibitor, suppresses the renal reabsorption of glucose and decreases blood glucose level in patients with type 2 diabetes. A characteristic of canagliflozin is its modest SGLT1 inhibitory action in the intestine at clinical dosage. To reveal its mechanism of action, we investigated the interaction of canagliflozin with SGLT1 and SGLT2. Inhibition kinetics and transporter-mediated uptake were examined in human SGLT1- or SGLT2-expressing cells. Whole-cell patch-clamp recording was conducted to examine the sidedness of drug action. Canagliflozin competitively inhibited SGLT1 and SGLT2, with high potency and selectivity for SGLT2. Inhibition constant (Ki) values for SGLT1 and SGLT2 were 770.5 and 4.0 nM, respectively. 14C-canagliflozin was suggested to be transported by SGLT2; however, the transport rate was less than that of α-methyl-d-glucopyranoside. Canagliflozin inhibited α-methyl-d-glucopyranoside–induced SGLT1- and SGLT2-mediated inward currents preferentially from the extracellular side and not from the intracellular side. Based on the Ki value, canagliflozin is estimated to sufficiently inhibit SGLT2 from the urinary side in renal proximal tubules. The Ki value for SGLT1 suggests that canagliflozin suppresses SGLT1 in the small intestine from the luminal side, whereas it does not affect SGLT1 in the heart and skeletal muscle, considering the maximal concentration of plasma-unbound canagliflozin. Similarly, SGLT1 in the kidney would not be inhibited, thereby aiding in the prevention of hypoglycemia. After binding to SGLT2, canagliflozin may be reabsorbed by SGLT2, which leads to the low urinary excretion and prolonged drug action of canagliflozin.


Journal of Pharmacological Sciences | 2015

The effect of combined treatment with canagliflozin and teneligliptin on glucose intolerance in Zucker diabetic fatty rats.

Takahiro Oguma; Chiaki Kuriyama; Keiko Nakayama; Yasuaki Matsushita; Kumiko Yoshida; Satoko Kiuchi; Yuka Ikenaga; Yoshinobu Nakamaru; Kumiko Hikida; Akira Saito; Kenji Arakawa; Kozo Oka; Kiichiro Ueta; Masaharu Shiotani

To assess the impact of concomitant inhibition of sodium-glucose cotransporter (SGLT) 2 and dipeptidyl peptidase IV (DPP4) for the treatment of type 2 diabetes mellitus (T2DM), the effect of combined treatment with canagliflozin, a novel SGLT2 inhibitor, and teneligliptin, a DPP4 inhibitor, on glucose intolerance was investigated in Zucker diabetic fatty (ZDF) rats. Canagliflozin potently inhibited human and rat SGLT2 and moderately inhibited human and rat SGLT1 activities but did not affect DPP4 activity. In contrast, teneligliptin inhibited human and rat DPP4 activities but not SGLT activities. A single oral treatment of canagliflozin and teneligliptin suppressed plasma glucose elevation in an oral glucose tolerance test in 13 week-old ZDF rats. This combination of agents elevated plasma active GLP-1 levels in a synergistic manner, probably mediated by intestinal SGLT1 inhibition, and further improved glucose intolerance. In the combination-treated animals, there was no pharmacokinetic interaction of the drugs and no further inhibition of plasma DPP4 activity compared with that in the teneligliptin-treated animals. These results suggest that the inhibition of SGLT2 and DPP4 improves glucose intolerance and that combined treatment with canagliflozin and teneligliptin is a novel therapeutic option for glycemic control in T2DM.


ACS Medicinal Chemistry Letters | 2014

Novel Indole-N-glucoside, TA-1887 As a Sodium Glucose Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes.

Sumihiro Nomura; Yasuo Yamamoto; Yosuke Matsumura; Kiyomi Ohba; Shigeki Sakamaki; Hirotaka Kimata; Keiko Nakayama; Chiaki Kuriyama; Yasuaki Matsushita; Kiichiro Ueta; Minoru Tsuda-Tsukimoto

Inhibition of the renal sodium glucose cotransporter (SGLT) increases urinary glucose excretion (UGE) and thus reduces blood glucose levels during hyperglycemia. To explore the potential of new antihyperglycemic agents, we synthesized and determined the human SGLT2 (hSGLT2) inhibitory potential of novel substituted 3-benzylindole-N-glucosides 6. Optimization of 6 resulted in the discovery of 3-(4-cyclopropylbenzyl)-4-fluoroindole-N-glucoside 6a-4 (TA-1887), a highly potent and selective hSGLT2 inhibitor, with pronounced antihyperglycemic effects in high-fat diet-fed KK (HF-KK) mice. Our results suggest the potential of indole-N-glucosides as novel antihyperglycemic agents through inhibition of renal SGLT2.


Bioorganic & Medicinal Chemistry Letters | 2013

N-Glucosides as human sodium-dependent glucose cotransporter 2 (hSGLT2) inhibitors.

Yasuo Yamamoto; Eiji Kawanishi; Yuichi Koga; Shigeki Sakamaki; Toshiaki Sakamoto; Kiichiro Ueta; Yasuaki Matsushita; Chiaki Kuriyama; Minoru Tsuda-Tsukimoto; Sumihiro Nomura

Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50=7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles.

Collaboration


Dive into the Kiichiro Ueta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Kawanishi

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar

Keiko Nakayama

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge