Kilian Koepsell
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kilian Koepsell.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Ryan T. Canolty; Karunesh Ganguly; Steven W. Kennerley; Charles F. Cadieu; Kilian Koepsell; Jonathan D. Wallis; Jose M. Carmena
Hebb proposed that neuronal cell assemblies are critical for effective perception, cognition, and action. However, evidence for brain mechanisms that coordinate multiple coactive assemblies remains lacking. Neuronal oscillations have been suggested as one possible mechanism for cell assembly coordination. Prior studies have shown that spike timing depends upon local field potential (LFP) phase proximal to the cell body, but few studies have examined the dependence of spiking on distal LFP phases in other brain areas far from the neuron or the influence of LFP–LFP phase coupling between distal areas on spiking. We investigated these interactions by recording LFPs and single-unit activity using multiple microelectrode arrays in several brain areas and then used a unique probabilistic multivariate phase distribution to model the dependence of spike timing on the full pattern of proximal LFP phases, distal LFP phases, and LFP–LFP phase coupling between electrodes. Here we show that spiking activity in single neurons and neuronal ensembles depends on dynamic patterns of oscillatory phase coupling between multiple brain areas, in addition to the effects of proximal LFP phase. Neurons that prefer similar patterns of phase coupling exhibit similar changes in spike rates, whereas neurons with different preferences show divergent responses, providing a basic mechanism to bind different neurons together into coordinated cell assemblies. Surprisingly, phase-coupling–based rate correlations are independent of interneuron distance. Phase-coupling preferences correlate with behavior and neural function and remain stable over multiple days. These findings suggest that neuronal oscillations enable selective and dynamic control of distributed functional cell assemblies.
Neuron | 2007
Xin Wang; Yichun Wei; Vishal Vaingankar; Qingbo Wang; Kilian Koepsell; Friedrich T. Sommer; Judith A. Hirsch
Thalamic relay cells transmit information from retina to cortex by firing either rapid bursts or tonic trains of spikes. Bursts occur when the membrane voltage is low, as during sleep, because they depend on channels that cannot respond to excitatory input unless they are primed by strong hyperpolarization. Cells fire tonically when depolarized, as during waking. Thus, mode of firing is usually associated with behavioral state. Growing evidence, however, suggests that sensory processing involves both burst and tonic spikes. To ask if visually evoked synaptic responses induce each type of firing, we recorded intracellular responses to natural movies from relay cells and developed methods to map the receptive fields of the excitation and inhibition that the images evoked. In addition to tonic spikes, the movies routinely elicited lasting inhibition from the center of the receptive field that permitted bursts to fire. Therefore, naturally evoked patterns of synaptic input engage dual modes of firing.
Frontiers in Neuroscience | 2010
Kilian Koepsell; Xin Wang; Judith A. Hirsch; Friedrich T. Sommer
Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.
IEEE Transactions on Biomedical Engineering | 2012
Ryan T. Canolty; Charles F. Cadieu; Kilian Koepsell; Robert T. Knight; Jose M. Carmena
Phase-amplitude cross-frequency coupling (CFC)-where the phase of a low-frequency signal modulates the amplitude or power of a high-frequency signal-is a topic of increasing interest in neuroscience. However, existing methods of assessing CFC are inherently bivariate and cannot estimate CFC between more than two signals at a time. Given the increase in multielectrode recordings, this is a strong limitation. Furthermore, the phase coupling between multiple low-frequency signals is likely to produce a high rate of false positives when CFC is evaluated using bivariate methods. Here, we present a novel method for estimating the statistical dependence between one high-frequency signal and N low-frequency signals, termed multivariate phase-coupling estimation (PCE). Compared to bivariate methods, the PCE produces sparser estimates of CFC and can distinguish between direct and indirect coupling between neurophysiological signals-critical for accurately estimating coupling within multiscale brain networks.
Journal of Neurophysiology | 2012
Ryan T. Canolty; Charles F. Cadieu; Kilian Koepsell; Karunesh Ganguly; Robert T. Knight; Jose M. Carmena
Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.
Biological Cybernetics | 2008
Kilian Koepsell; Friedrich T. Sommer
Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. Here, we present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase relative to the stimulus. We propose a model to reproduce characteristic features of oscillatory spike trains, such as histograms of inter-spike intervals and phase locking of spikes to an oscillatory influence. The proposed model is based on an inhomogeneous Gamma process governed by a density function that is a product of the usual stimulus-dependent rate and a quasi-periodic function. Further, we present an analysis method generalizing the direct method (Rieke et al. in Spikes: exploring the neural code. MIT Press, Cambridge, 1999; Brenner et al. in Neural Comput 12(7):1531–1552, 2000) to assess the information content in such data. We demonstrate these tools on recordings from relay cells in the lateral geniculate nucleus of the cat.
international conference on image processing | 2014
Christopher J. Hillar; Ram Mehta; Kilian Koepsell
The Hopfield network is a well-known model of memory and collective processing in networks of abstract neurons, but it has been dismissed for use in signal processing because of its small pattern capacity, difficulty to train, and lack of practical applications. In the last few years, however, it has been demonstrated that exponential storage is possible for special classes of patterns and network connectivity structures. Over the same time period, advances in training large-scale networks have also appeared. Here, we train Hopfield networks on discretizations of grayscale digital photographs using a learning technique called minimum probability flow (MPF). After training, we demonstrate that these networks have exponential memory capacity, allowing them to perform state-of-the-art image compression in the high quality regime. Our findings suggest that the local structure of images is remarkably well-modeled by a binary recurrent neural network.
BMC Neuroscience | 2013
Chris Hillar; Jascha Sohl-Dickstein; Kilian Koepsell
We present an algorithm to store binary memories in a Little-Hopfield neural network using minimum probability flow, a recent technique to fit parameters in energy-based probabilistic models. For memories without noise, our algorithm provably achieves optimal pattern storage and outperforms classical methods both in speed and memory recovery. Moreover, when trained on noisy or corrupted versions of a fixed set of binary patterns, our algorithm finds networks which correctly store the originals. We also demonstrate this finding visually with the unsupervised storage and clean-up of large binary fingerprint images from significantly corrupted samples.
arXiv: Adaptation and Self-Organizing Systems | 2012
Christopher J. Hillar; Jascha Sohl-Dickstein; Kilian Koepsell
Archive | 2013
Matthew Doka; Victor Ho; Kilian Koepsell; Ram Mehta