Kim A. Lennox
Integrated DNA Technologies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim A. Lennox.
The EMBO Journal | 2011
Tal Melkman-Zehavi; Roni Oren; Sharon Kredo-Russo; Tirosh Shapira; Amitai D. Mandelbaum; Natalia Rivkin; Tomer Nir; Kim A. Lennox; Mark A. Behlke; Yuval Dor; Eran Hornstein
MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β‐cells remain unclear. Here, we show that miRNA inactivation in β‐cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1‐deficient β‐cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR‐24, miR‐26, miR‐182 or miR‐148 in cultured β‐cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA‐dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.
Nucleic Acids Research | 2016
Kim A. Lennox; Mark A. Behlke
Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments.
Molecular therapy. Nucleic acids | 2013
Kim A. Lennox; Richard Owczarzy; Derek M. Thomas; Joseph A. Walder; Mark A. Behlke
Anti-microRNA oligonucleotides (AMOs) are steric blocking antisense reagents that inhibit microRNA (miRNA) function by hybridizing and repressing the activity of a mature miRNA. First generation AMOs employed 2′-O-Methyl RNA nucleotides (2′OMe) with phosphorothioate (PS) internucleotide linkages positioned at both ends to block exonuclease attack. Second generation AMOs improved potency through the use of chemical modifications that increase binding affinity to the target, such as locked nucleic acid (LNA) residues. However, this strategy can reduce specificity as high binding affinity compounds can bind to and suppress function of related sequences even if one or more mismatches are present. Further, unnatural modified nucleic acid residues can have toxic side effects. In the present study, a variety of non-nucleotide modifiers were screened for utility in steric blocking antisense applications. A novel compound, N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine (“ZEN”), was discovered that increased binding affinity and blocked exonuclease degradation when placed at or near each end of a single-stranded oligonucleotide. This new modification was combined with the 2′OMe RNA backbone to make ZEN-AMOs. The new ZEN-AMOs have high potency and can effectively inhibit miRNA function in vitro at low nanomolar concentrations, show high specificity, and have low toxicity in cell culture.
Molecular therapy. Nucleic acids | 2013
Congsheng Cheng; Yong Hong Chen; Kim A. Lennox; Mark A. Behlke; Beverly L. Davidson
The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be modified to carry payloads. We developed a library of aptamers and an in vivo evolution protocol to determine whether specific aptamers could be identified that would home to the brain after injection into the peripheral vasculature. Unlike biopanning with recombinant bacteriophage libraries, we found that the aptamer library employed here required more than 15 rounds of in vivo selection for convergence to specific sequences. The aptamer species identified through this approach bound to brain capillary endothelia and penetrated into the parenchyma. The methods described may find general utility for targeting various payloads to the brain.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Philip H. Karp; Peng Jiang; Lynda S. Ostedgaard; Amy E. Walz; John T. Fisher; Shaf Keshavjee; Kim A. Lennox; Ashley M. Jacobi; Scott Rose; Mark A. Behlke; Michael Welsh; Yi Xing; Paul B. McCray
Production of functional proteins requires multiple steps, including gene transcription and posttranslational processing. MicroRNAs (miRNAs) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that miRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with an miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl− permeability independent of elevated mRNA levels. An miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, protein degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl− transport to cystic fibrosis airway epithelia. This miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process more broadly than recognized previously. This discovery also provides therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.
Development | 2012
Sharon Kredo-Russo; Amitai D. Mandelbaum; Avital Ness; Ilana Alon; Kim A. Lennox; Mark A. Behlke; Eran Hornstein
Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors and in mature endocrine cells. We further demonstrate that Pax6 is an important target of miR-7. miR-7 overexpression in developing pancreas explants or in transgenic mice led to Pax6 downregulation and inhibition of α- and β-cell differentiation, resembling the molecular changes caused by haploinsufficient expression of Pax6. Accordingly, miR-7 knockdown resulted in Pax6 upregulation and promoted α- and β-cell differentiation. Furthermore, Pax6 downregulation reversed the effect of miR-7 knockdown on insulin promoter activity. These data suggest a novel miR-7-based circuit that ensures precise control of endocrine cell differentiation.
International Journal of Pharmaceutics | 2012
NaJung Kim; Dahai Jiang; Ashley M. Jacobi; Kim A. Lennox; Scott Rose; Mark A. Behlke; Aliasger K. Salem
Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45-13.3 PEG chains and 4.7-3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169 to 357 nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2h post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone.
American Journal of Respiratory Cell and Molecular Biology | 2013
Philip H. Karp; Samantha R. Osterhaus; Peng Jiang; Christine L. Wohlford-Lenane; Kim A. Lennox; Ashley M. Jacobi; Kal Praekh; Scott Rose; Mark A. Behlke; Yi Xing; Michael J. Welsh; Paul B. McCray
MicroRNAs (miRNAs) are increasingly recognized as important posttranscriptional regulators of gene expression, and changes in their actions can contribute to disease states. Little is understood regarding miRNA functions in the airway epithelium under normal or diseased conditions. We profiled miRNA expression in well-differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia, and discovered that miR-509-3p and miR-494 concentrations were increased in CF epithelia. Human non-CF airway epithelia, transfected with the mimics of miR-509-3p or miR-494, showed decreased cystic fibrosis transmembrane conductance regulator (CFTR) expression, whereas their respective anti-miRs exerted the opposite effect. Interestingly, the two miRNAs acted cooperatively in regulating CFTR expression. Upon infecting non-CF airway epithelial cells with Staphylococcus aureus, or upon stimulating them with the proinflammatory cytokines TNF-α or IL-1β, we observed an increased expression of both miRNAs and a concurrent decrease in CFTR expression and function, suggesting that inflammatory mediators may regulate these miRNAs. Transfecting epithelia with anti-miRs for miR-509-3p and miR-494, or inhibiting NF-κB signaling before stimulating cells with TNFα or IL-1β, suppressed these responses, suggesting that the expression of both miRNAs was responsive to NF-κB signaling. Thus, miR-509-3p and miR-494 are dynamic regulators of CFTR abundance and function in normal, non-CF airway epithelia.
Molecular Therapy | 2008
Louis Doré-Savard; Geneviève Roussy; Marc-André Dansereau; Michael A. Collingwood; Kim A. Lennox; Scott Rose; Nicolas Beaudet; Mark A. Behlke; Philippe Sarret
RNA interference (RNAi) is gaining acceptance as a potential therapeutic strategy against peripheral disease, and several clinical trials are already underway with 21-mer small-interfering RNA (siRNA) as the active pharmaceutical agent. However, for central affliction like pain, such innovating therapies are limited but nevertheless crucial to improve pain research and management. We demonstrate here the proof-of-concept of the use of 27-mer Dicer-substrate siRNA (DsiRNA) for silencing targets related to CNS disorders such as pain states. Indeed, low dose DsiRNA (0.005 mg/kg) was highly efficient in reducing the expression of the neurotensin receptor-2 (NTS2, a G-protein-coupled receptor (GPCR) involved in ascending nociception) in rat spinal cord through intrathecal (IT) administration formulated with the cationic lipid i-Fect. Along with specific decrease in NTS2 mRNA and protein, our results show a significant alteration in the analgesic effect of a selective-NTS2 agonist, reaching 93% inhibition up to 3-4 days after administration of DsiRNA. In order to ensure that these findings were not biased by unsuspected off-target effects (OTEs), we also demonstrated that treatment with a second NTS2-specific DsiRNA also reversed NTS2-induced antinociception, and that NTS2-specific 27-mer duplexes did not alter signaling through NTS1, a closely related receptor. Altogether, DsiRNAi represents a potent tool for dissecting nociceptive pathways and could further lead to a new class of central active drugs.
Neurobiology of Disease | 2013
Megan S. Keiser; James Geoghegan; Ryan L. Boudreau; Kim A. Lennox; Beverly L. Davidson
Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant late onset neurodegenerative disease caused by an expanded polyglutamine tract in ataxin-1. Here, we compared the protective effects of overexpressing ataxin-1-like using recombinant AAVs, or reducing expression of mutant ataxin-1 using virally delivered RNA interference (RNAi), in a transgenic mouse model of SCA1. For the latter, we used an artificial microRNA (miR) design that optimizes potency, efficacy and safety to suppress ataxin-1 expression (miS1). Delivery of either ataxin-1-like or miS1 viral vectors to SCA1 mice cerebella resulted in widespread cerebellar Purkinje cell transduction and improved behavioral and histological phenotypes. Our data indicate the utility of either approach as a possible therapy for SCA1 patients.