Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim-Anne Lê is active.

Publication


Featured researches published by Kim-Anne Lê.


Physiological Reviews | 2010

Metabolic Effects of Fructose and the Worldwide Increase in Obesity

Luc Tappy; Kim-Anne Lê

While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic consequences of high fructose corn syrup versus sucrose consumption.


The American Journal of Clinical Nutrition | 2009

Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes

Kim-Anne Lê; Michael Ith; Roland Kreis; David Faeh; Murielle Bortolotti; Christel Tran; Chris Boesch; Luc Tappy

BACKGROUND Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.


Current Opinion in Clinical Nutrition and Metabolic Care | 2006

Metabolic effects of fructose

Kim-Anne Lê; Luc Tappy

Purpose of reviewFructose is consumed in significant amounts in Western diets. An increase in fructose consumption over the past 10–20 years has been linked with a rise in obesity and metabolic disorders. Fructose/sucrose produces deleterious metabolic effects in animal models. This raises concern regarding the short-term and long-term effects of fructose and its risk in humans. Recent findingsIn rodents, fructose stimulates lipogenesis and leads to hepatic and extrahepatic insulin resistance, dyslipidaemia and high blood pressure. Insulin resistance appears to be related to ectopic lipid deposition. In humans, short-term fructose feeding increases de-novo lipogenesis and blood triglycerides and causes hepatic insulin resistance. There is presently no evidence for fructose-induced muscle insulin resistance in humans. The cellular mechanisms underlying the metabolic effects of fructose involve production of reactive oxygen species, activation of cellular stress pathways and possibly an increase in uric acid synthesis. SummaryConsuming large amounts of fructose can lead to the development of a complete metabolic syndrome in rodents. In humans, fructose consumed in moderate to high quantities in the diet increases plasma triglycerides and alters hepatic glucose homeostasis, but does not appear to cause muscle insulin resistance or high blood pressure in the short term. Further human studies are required to delineate the effects of fructose in humans.


British Journal of Nutrition | 2010

Effects of a short-term overfeeding with fructose or glucose in healthy young males

Emilienne Tudor Ngo Sock; Kim-Anne Lê; Michael Ith; Roland Kreis; Chris Boesch; Luc Tappy

Consumption of simple carbohydrates has markedly increased over the past decades, and may be involved in the increased prevalence in metabolic diseases. Whether an increased intake of fructose is specifically related to a dysregulation of glucose and lipid metabolism remains controversial. We therefore compared the effects of hypercaloric diets enriched with fructose (HFrD) or glucose (HGlcD) in healthy men. Eleven subjects were studied in a randomised order after 7 d of the following diets: (1) weight maintenance, control diet; (2) HFrD (3.5 g fructose/kg fat-free mass (ffm) per d, +35 % energy intake); (3) HGlcD (3.5 g glucose/kg ffm per d, +35 % energy intake). Fasting hepatic glucose output (HGO) was measured with 6,6-2H2-glucose. Intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured by 1H magnetic resonance spectroscopy. Both fructose and glucose increased fasting VLDL-TAG (HFrD: +59 %, P < 0.05; HGlcD: +31 %, P = 0.11) and IHCL (HFrD: +52 %, P < 0.05; HGlcD: +58 %, P = 0.06). HGO increased after both diets (HFrD: +5 %, P < 0.05; HGlcD: +5 %, P = 0.05). No change was observed in fasting glycaemia, insulin and alanine aminotransferase concentrations. IMCL increased significantly only after the HGlcD (HFrD: +24 %, NS; HGlcD: +59 %, P < 0.05). IHCL and VLDL-TAG were not different between hypercaloric HFrD and HGlcD, but were increased compared to values observed with a weight maintenance diet. However, glucose led to a higher increase in IMCL than fructose.


The American Journal of Clinical Nutrition | 2010

Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption.

Jaimie N. Davis; Kim-Anne Lê; Ryan W. Walker; Susanna Vikman; Donna Spruijt-Metz; Marc J. Weigensberg; Hooman Allayee; Michael I. Goran

BACKGROUND Recently, a genetic variant (rs738409; C→G) of the PNPLA3 gene was identified to be associated with increased hepatic fat deposition, and the effect was more pronounced in Hispanics. Animal models have also shown that PNPLA3 expression can be regulated by dietary carbohydrate. OBJECTIVE The aim of this study was to examine whether the influence of PNPLA3 genotype on hepatic fat is modulated by dietary factors in Hispanic children. DESIGN PNPLA3 was genotyped in 153 Hispanic children (75% female, ages 8-18 y) by using the TaqMan method. Dietary intake was assessed by using three 24-h dietary recalls or diet records. Visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAAT), and hepatic fat fraction (HFF) were assessed in multiple abdominal slices by magnetic resonance imaging. Analysis of covariance was used to assess the diet × genotype interaction in liver fat, with the following a priori covariates: sex, age, energy, VAT, and SAAT. RESULTS HFF was influenced by a significant interaction between genotype and diet (genotype × carbohydrate, P = 0.04; genotype × total sugar, P = 0.01). HFF was positively related to carbohydrate (r = 0.31, P = 0.04) and total sugar (r = 0.34, P = 0.02) intakes but only in the GG group, independent of covariates. Dietary variables were not related to HFF in the CC or CG group or to other fat depots in all genotype groups. CONCLUSIONS These findings suggest that Hispanic children carrying the GG genotype are susceptible to increased hepatic fat when dietary carbohydrate intake, specifically sugar, is high. Specific dietary interventions based on genetic predisposition in this population may lead to more effective therapeutic outcomes for fatty liver. This trial was registered at clinicaltrials.gov as NCT00697580, 195-1642394A1, and NCT00693511.


The American Journal of Clinical Nutrition | 2009

High protein intake reduces intrahepatocellular lipid deposition in humans

Murielle Bortolotti; Roland Kreis; Cyrille Debard; Bertrand Cariou; David Faeh; Maud Chétiveaux; Michael Ith; Peter Vermathen; Nathalie Stefanoni; Kim-Anne Lê; Philippe Schneiter; Michel Krempf; Hubert Vidal; Chris Boesch; Luc Tappy

BACKGROUND High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.


Diabetes | 2010

Effects of PNPLA3 on Liver Fat and Metabolic Profile in Hispanic Children and Adolescents

Michael I. Goran; Ryan W. Walker; Kim-Anne Lê; Swapna Mahurkar; Susanna Vikman; Jaimie N. Davis; Donna Spruijt-Metz; Marc J. Weigensberg; Hooman Allayee

OBJECTIVE A genome-wide study of adults identified a variant of PNPLA3 (rs738409) associated with ∼twofold higher liver fat. The purpose of this study was to examine the influence of PNPLA3 genotype on liver fat and other related metabolic outcomes in obese Hispanic children and adolescents. RESEARCH DESIGN AND METHODS Three hundred and twenty-seven Hispanics aged 8–18 years were genotyped for rs738409. One hundred and eighty-eight subjects had measures of visceral (VAT) and subcutaneous (SAT) adipose tissue volume and hepatic (HFF) and pancreatic (PFF) fat fraction by magnetic resonance imaging. One hundred and thirty-nine subjects did not have HFF measures but had extensive measures of insulin sensitivity and fasting lipids. RESULTS Liver fat in GG subjects was 1.7 and 2.4 times higher than GC and CC (11.1 ± 0.8% in GG vs. 6.6 ± 0.7% in GC and 4.7 ± 0.9% in CC; P < 0.0001), and this effect was observed even in the youngest children (8–10 years of age). The variant was not associated with VAT, SAT, PFF, or insulin sensitivity or other glucose/insulin indexes. However, Hispanic children carrying the GG genotype had significantly lower HDL cholesterol (40.9 ± 10.9 in CC vs. 37.0 ± 8.3 in CG vs. 35.7 ± 7.4 in GG; P = 0.03) and a tendency toward lower free fatty acid levels (P = 0.06). CONCLUSIONS These results provide new evidence that the effect of the PNPLA3 variant is apparent in Hispanic children and adolescents, is unique to fat deposition in liver as compared with other ectopic depots examined, and is associated with lower HDL cholesterol.


Nutrition & Metabolism | 2013

Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

Bertrand Cariou; Cédric Langhi; Maëlle Le Bras; Murielle Bortolotti; Kim-Anne Lê; Fanny Theytaz; Cédric Le May; Béatrice Guyomarc’h-Delasalle; Yassine Zair; Roland Kreis; Chris Boesch; Michel Krempf; Luc Tappy; Philippe Costet

BackgroundPCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters.MethodsWe performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1).FindingsHF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity.ConclusionsPlasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.


Clinics and Research in Hepatology and Gastroenterology | 2012

Does fructose consumption contribute to non-alcoholic fatty liver disease?

Luc Tappy; Kim-Anne Lê

Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.


Diabetes Care | 2011

Ethnic Differences in Pancreatic Fat Accumulation and Its Relationship With Other Fat Depots and Inflammatory Markers

Kim-Anne Lê; Emily E. Ventura; Jessica Q. Fisher; Jaimie N. Davis; Marc J. Weigensberg; Mark Punyanitya; Houchun H. Hu; Krishna S. Nayak; Michael I. Goran

OBJECTIVE Visceral adipose tissue (VAT) and hepatic fat are associated with insulin resistance and vary by sex and ethnicity. Recently, pancreatic fat fraction (PFF) has also been linked with increasing obesity. Our aim was to assess ethnic and sex differences in PFF and its relationship to other fat depots, circulating free fatty acids (FFA), insulin secretion and sensitivity, and inflammation in obese adolescents and young adults. RESEARCH DESIGN AND METHODS We examined 138 (40 males, 98 females) obese Hispanics and African Americans (13–25 years). Subcutaneous adipose tissue and VAT volumes, hepatic fat fraction (HFF), and PFF were determined by magnetic resonance imaging. Insulin sensitivity and β-cell function were assessed during an intravenous glucose tolerance test. RESULTS Hispanics had higher PFF than African Americans (7.3 ± 3.8 vs. 6.2 ± 2.6%, P = 0.03); this ethnic difference was higher in young adults compared with children and adolescents (ethnicity × age: P = 0.01). Males had higher PFF than females (P < 0.0001). PFF was positively correlated with VAT (r = 0.45, P < 0.0001), HFF (r = 0.29, P < 0.0001), and FFA (r = 0.32, P = 0.001). PFF positively correlated with inflammatory markers but lost significance when adjusted for VAT. In multiple stepwise regression analysis, VAT and FFA were the best predictors of PFF (adjusted R2 = 0.40). There were no significant correlations between PFF and markers of insulin sensitivity or β-cell function. CONCLUSIONS PFF is higher in Hispanics than African Americans, and this difference increases with age. In young obese individuals, PFF is related to VAT, HFF, and circulating FFA, thus possibly contributing to their increased risk for type 2 diabetes and related metabolic disorders.

Collaboration


Dive into the Kim-Anne Lê's collaboration.

Top Co-Authors

Avatar

Luc Tappy

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Faeh

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael I. Goran

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaimie N. Davis

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge