Kim Berlo
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim Berlo.
Geochemistry Geophysics Geosystems | 2011
Heather Handley; Simon Turner; Kim Berlo; Christopher Beier; Alberto E. Saal
Uranium-series isotopes (238U-230Th-226Ra-210Pb), major element, trace element, and Sr-Nd isotopic data are presented for recent (<60 years old) Galapagos archipelago basalts. Volcanic rocks from all centers studied (Fernandina, Cerro Azul, Sierra Negra, and Wolf Volcano) display 230Th excesses (4%–15%) and steep rare earth element (REE) patterns indicative of residual garnet during partial melting of their mantle source. Rare earth element modeling suggests that only a few percent of garnet is involved. Correlations between (238U/232Th), radiogenic isotopes and Nb/Zr ratio suggest that the U/Th ratio of these Galapagos volcanic rocks is primarily controlled by geochemical source variations and not fractionation during partial melting. The lowest (230Th/238U) ratio is not observed at Fernandina (the supposed center of the plume) but at the more geochemically “depleted” Wolf Volcano, further to the north. Small radium excesses are observed for all samples with (226Ra/230Th) ranging from 1.107 to 1.614. The 226Ra-230Th disequilibria do not correlate with other uranium-series parent-daughter nuclide pairs or geochemical data, suggesting modification at shallow levels on timescales relevant to the half-life of 226Ra (1600 years). The combination of 226Ra and 210Pb excesses is inconsistent with interaction of magma with cumulate material unless decoupling of 210Pb (or an intermediate daughter, such as 222Rn) occurs prior to modification of Ra-Th disequilibria. An intriguing correlation of (210Pb/226Ra)0 with Nb/Zr and radiogenic isotopes requires further investigation but suggests possible control via magmatic degassing and accumulation that may somehow be related to source heterogeneities.
Frontiers of Earth Science in China | 2016
Elodie Saubin; Hugh Tuffen; Lucia Gurioli; Jacqueline Owen; Jonathan M. Castro; Kim Berlo; Ellen McGowan; C. Ian Schipper; Katia Wehbe
The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaiten, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which then triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic
Geological Society, London, Special Publications | 2017
Vincent J. van Hinsberg; Nathalie Vigouroux; S. C. Palmer; Kim Berlo; Guillaume Mauri; Anthony E. Williams-Jones; Jeffrey M. McKenzie; Glyn Williams-Jones; Tobias P. Fischer
Abstract Volcanoes play an important role in the global cycling of elements by providing a pathway from the deep Earth to its surface. Here, we have constrained the flux to the environment for most elements of the periodic table for the passively degassing, crater lake-hosting Kawah Ijen volcano in the Indonesian arc. Our results indicate that emissions of Kawah Ijen are dominated by acid water outflow, especially for the ligands (Cl, F, Br), with active fumaroles contributing significant (semi)metals (e.g. Se, As, Sb, Hg), as well as C and S. The compositional signature of emissions from Kawah Ijen is similar to that of major volcanic emitters such as Etna, but element fluxes are smaller. This result provides the prerequisite foundation for extrapolating a small set of measured volcanic gas emissions to a global volcanic flux estimate. However, the aqueous flux (i.e. seepage of volcanic hydrothermal fluids and volcano-influenced groundwater) is at least as important in terms of element release, and the consideration of the gaseous flux alone thus represents a significant underestimate of the impact of volcanoes on their environment and the contribution of volcanic hydrothermal systems to global element cycling. Supplementary material: The full datasets of water and fumarole gas chemical analyses are available at https://doi.org/10.6084/m9.figshare.c.2134359
Geology | 2006
Kim Berlo; Simon Turner; Jon D Blundy; Chris J. Hawkesworth
[Dufek and Cooper (2005][1]; hereafter DC) present an interesting and provocative paper on the origins of 226Ra excess in arc lavas. They develop an incongruent continuous melting model to argue that 226Ra excess can be created by partial melting in the lower crust. However, despite the novelty of
Frontiers of Earth Science in China | 2018
Vincent J. van Hinsberg; Kim Berlo; Moritz Liesegang; Kayla Iacovino; Ilya N. Bindeman; Heather Wright
At Kawah Ijen (Indonesia), vigorous SO2 and HCl degassing sustains a hyperacid lake (pH ~0) and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for six weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the opal suggests that post-eruption alteration of pumice is more likely than pre-eruption envelopment of euhedral opal-replaced phenocrysts in dacitic melt. At Ijen and elsewhere, the ascent of magma into hydrous acid-altered mineral assemblages (e.g., opal, kaolinite, alunite) could induce rapid dehydration of hydrous minerals and amorphous materials, generating considerable steam and contributing to magmatic-hydrothermal and phreatomagmatic explosions.
Professional Paper | 2008
Jon Blundy; Katharine V. Cashman; Kim Berlo
Major element, trace element, and volatile concentrations in 187 glassy melt inclusions and 25 groundmass glasses from the 1980-86 eruption of Mount St. Helens are presented, together with 103 analyses of touching Fe-Ti oxide pairs from the same samples. These data are used to evaluate the temporal evolution of the magmatic plumbing system beneath the volcano during 1980-86 and so provide a framework in which to interpret analyses of melt inclusions from the current (2004-2006) eruption. Major and trace element concentrations of all melt inclusions lie at the high-SiO 2 end of the data array defined by eruptive products of late Quaternary age from Mount St. Helens. For several major and trace elements, the glasses define a trend that is oblique to the whole-rock trend, indicating that different mineral assemblages were responsible for the two trends. The whole-rock trend can be ascribed to differentiation of hydrous basaltic parents in a deep-seated magma reservoir, probably at depths great enough to stabilize garnet. In contrast, the glass trends were generated by closed-system crystallization of the phenocryst and microlite mineral assemblages at low pressures. The dissolved H 2 O content of the melt inclusions from 1980-86, as measured by ion microprobe, ranges from 0 to 6.7 wt. percent, with the highest values obtained from the plinian phase of May 18, 1980. Water contents decrease with increasing SiO 2 , consistent with decompression-driven crystallization. Preliminary data for dissolved CO 2 in melt inclusions from the May 18 plinian phase and from August 7, 1980, indicate that X H2O in the vapor phase was approximately constant at 0.80, irrespective of H 2 O content, suggestive of closed-system degassing with a high bubble fraction or gas streaming through the subvolcanic system. Temperature and f O2 estimates for touching Fe-Ti oxides show evidence for heating during crystallization owing to release of latent heat. Consequently, magmas with the highest microlite crystallinities record the highest temperatures. Magmas also become progressively reduced during ascent and degassing, probably as a result of redox equilibria between exsolving S-bearing gases and magmas. The lowest temperature oxides have f O2 ≈ NNO, similar to high-temperature fumarole gases from the volcano. The temperature and f O2 of the magma tapped by the plinian phase of May 18, 1980, are 870-875°C and NNO+0.8, respectively. The dissolved volatile contents of the melt inclusions have been used to calculate sealing pressures; that is, the pressure at which chemical exchange between inclusion and matrix melt ceased. These are greatest for the May 18 plinian magma (120 to 320 MPa); lower pressures are recorded by samples of the preplinian cryptodome and by all post-May 18 magmas. Magma crystallinity, calculated from melt-inclusion Rb contents, is negatively correlated with sealing pressure, consistent with decompression crystallization. Elevated contents of Li in melt inclusions from the cryptodome and post-May 18 samples are consistent with transfer of Li in a magmatic vapor phase from deeper parts of the magma system to magma stored at shallower levels. The Li enrichment attains its maximum extent at ~150 MPa, which is ascribed to separation of a single vapor phase into H 2 O-rich gas and dense Li-rich brine at the top of the magma column. There are striking correlations between melt-inclusion chemistry and monitoring data for the 1980-86 eruption.
Science | 2004
Kim Berlo; Jon D Blundy; Simon Turner; Kathy Cashman; Chris J. Hawkesworth; Stuart Black
Journal of Petrology | 2007
Heather Handley; Colin G. Macpherson; Jon P. Davidson; Kim Berlo; D. Lowry
Earth and Planetary Science Letters | 2004
Simon Turner; Stuart Black; Kim Berlo
Earth and Planetary Science Letters | 2013
Michelle Parks; Stefano Caliro; Giovanni Chiodini; David M. Pyle; Tamsin A. Mather; Kim Berlo; Marie Edmonds; Juliet Biggs; Paraskevi Nomikou; Costas Raptakis