Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim D. Janda is active.

Publication


Featured researches published by Kim D. Janda.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Vaccination against weight gain

Eric P. Zorrilla; Shinichi Iwasaki; Jason A. Moss; Jason Y. Chang; Jonathan Otsuji; Koki Inoue; Michael M. Meijler; Kim D. Janda

Obesity endangers the lives of millions of people worldwide, through comorbidities such as heart disease, cancers, type 2 diabetes, stroke, arthritis, and major depression. New approaches to control body weight remain a high priority. Vaccines traditionally have been used to protect against infectious diseases and, more recently, for unconventional targets such as drug addiction. Methodologies that could specifically modulate the bioavailability of an endogenous molecule that regulates energy balance might provide a new foundation for treating obesity. Here we show that active vaccination of mature rats with ghrelin immunoconjugates decreases feed efficiency, relative adiposity, and body weight gain in relation to the immune response elicited against ghrelin in its active, acylated form. Three active vaccines based on the 28-aa residue sequence of ghrelin, a gastric endocrine hormone, were used to immunize adult male Wistar rats (n = 17). Synthetic ghrelin analogs were prepared that spanned residues 1–10 [ghrelin (1–10) Ser-3(butanoyl) hapten, Ghr1], 13–28 [ghrelin (13–28) hapten, Ghr2], and 1–28 [ghrelin(1–28) Ser-3(butanoyl) hapten, Ghr3], and included n-butanoyl esters at Ser-3. Groups immunized with Ghr1 or Ghr3 showed greater and more selective plasma binding capacity for the active, Ser-3-(n-octanoyl) form of ghrelin as compared with Ghr2 or keyhole limpet hemocyanin vaccinated controls. Accordingly, they gained less body weight, with sparing of lean mass and preferential reduction of body fat, consistent with reduced circulating leptin levels. The ratio of brain/serum ghrelin levels was lower in rats with strong anti-ghrelin immune responses. Effects were not attributable to nonspecific inflammatory responses. Vaccination against the endogenous hormone ghrelin can slow weight gain in rats by decreasing feed efficiency.


Science | 2008

Modulation of Gene Expression via Disruption of NF-κB Signaling by a Bacterial Small Molecule

Vladimir V. Kravchenko; Gunnar F. Kaufmann; John C. Mathison; David Arthur Scott; Alexander Z. Katz; David C. Grauer; Mandy Lehmann; Michael M. Meijler; Kim D. Janda; Richard J. Ulevitch

The control of innate immune responses through activation of the nuclear transcription factor NF-κB is essential for the elimination of invading microbial pathogens. We showed that the bacterial N-(3-oxo-dodecanoyl) homoserine lactone (C12) selectively impairs the regulation of NF-κB functions in activated mammalian cells. The consequence is specific repression of stimulus-mediated induction of NF-κB–responsive genes encoding inflammatory cytokines and other immune regulators. These findings uncover a strategy by which C12-producing opportunistic pathogens, such as Pseudomonas aeruginosa, attenuate the innate immune system to establish and maintain local persistent infection in humans, for example, in cystic fibrosis patients.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A method for the generation of combinatorial antibody libraries using pIX phage display

Changshou Gao; Shenlan Mao; Gunnar F. Kaufmann; Peter Wirsching; Richard A. Lerner; Kim D. Janda

For more than a decade, phage displayed combinatorial antibody libraries have been used to generate and select a wide variety of antibodies. We previously reported that the phage coat proteins pVII and pIX could be used to display the heterodimeric structure of the antibody Fv region. Herein, aspects of this technology were invoked and extended to construct a large, human single-chain Fv (scFv) library of 4.5 × 109 members displayed on pIX of filamentous bacteriophage. Furthermore, the diversity, quality, and utility of the library were demonstrated by the selection of scFv clones against six different protein antigens. Notably, more than 90% of the selected clones showed positive binding for their respective antigens after as few as three rounds of panning. Analyzed scFvs were also found to be of high affinity. For example, kinetic analysis (BIAcore) revealed that scFvs against staphylococcal enterotoxin B and cholera toxin B subunit had a nanomolar and subnanomolar dissociation constant, respectively, affording affinities comparable to, or exceeding that, of mAbs obtained from immunization. High specificity was also attained, not only between very distinct proteins, but also in the case of the Ricinus communis (“ricin”) agglutinins (RCA60 and RCA120), despite >80% sequence homology between the two. The results suggested that the performance of pIX-display libraries can potentially exceed that of the pIII-display format and make it ideally suited for panning a wide variety of target antigens.


Chemical Society Reviews | 2007

Technological advancements for the detection of and protection against biological and chemical warfare agents

Lisa M. Eubanks; Tobin J. Dickerson; Kim D. Janda

There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.


Bioorganic & Medicinal Chemistry | 2002

Histidine kinases as targets for new antimicrobial agents

Masayuki Matsushita; Kim D. Janda

The emergence and spread of hospital acquired multi drug resistant bacteria present a need for new antibiotics with innovative mode of action. Advances in molecular microbiology and genomics have led to the identification of numerous bacterial genes coding for proteins that could potentially serve as targets for antibacterial compounds. Histidine kinase promoted two-component systems are extremely common in bacteria and play an important role in essential signal transduction for adapting to bacterial stress. Since signal transduction in mammals occurs by a different mechanism, inhibition of histidine kinases could be a potential target for antimicrobial agents. This review will summarize our current knowledge of the structure and function of histidine kinase and the development of antibiotics with a new mode of action: targeting histidine kinase promoted signal transduction and its subsequent regulation of gene expression system.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists

Lisa M. Eubanks; Mark S. Hixon; Wei Jin; Sukwon Hong; Colin M. Clancy; William H. Tepp; Michael R. Baldwin; Carl J. Malizio; Michael C. Goodnough; Joseph T. Barbieri; Eric A. Johnson; Dale L. Boger; Tobin J. Dickerson; Kim D. Janda

Among the agents classified as “Category A” by the U.S. Centers for Disease Control and Prevention, botulinum neurotoxin (BoNT) is the most toxic protein known, with microgram quantities of the protein causing severe morbidity and mortality by oral or i.v. routes. Given that this toxin easily could be used in a potential bioterrorist attack, countermeasures urgently are needed to counteract the pathophysiology of BoNT. At a molecular level, BoNT exerts its paralytic effects through intracellular cleavage of vesicle docking proteins and subsequent organism-wide autonomic dysfunction. In an effort to identify small molecules that would disrupt the interaction between the light-chain metalloprotease of BoNT serotype A and its cognate substrate, a multifaceted screening effort was undertaken. Through the combination of in vitro screening against an optimized variant of the light chain involving kinetic analysis, cellular protection assays, and in vivo mouse toxicity assays, molecules that prevent BoNT/A-induced intracellular substrate cleavage and extend the time to death of animals challenged with lethal toxin doses were identified. Significantly, the two most efficacious compounds in vivo showed less effective activity in cellular assays intended to mimic BoNT exposure; indeed, one of these compounds was cytotoxic at concentrations three orders of magnitude below its effective dose in animals. These two lead compounds have surprisingly simple molecular structures and are readily amenable to optimization efforts for improvements in their biological activity. The findings validate the use of high-throughput screening protocols to define previously unrecognized chemical scaffolds for the development of therapeutic agents to treat BoNT exposure.


Journal of Biological Chemistry | 2006

N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways.

Vladimir V. Kravchenko; Gunnar F. Kaufmann; John C. Mathison; David A. Scott; Alexander Z. Katz; Malcolm R. Wood; Andrew P. Brogan; Mandy Lehmann; Jenny M. Mee; Kazunori Iwata; Qilin Pan; Colleen Fearns; Ulla G. Knaus; Michael M. Meijler; Kim D. Janda; Richard J. Ulevitch

Innate immune system receptors function as sensors of infection and trigger the immune responses through ligand-specific signaling pathways. These ligands are pathogen-associated products, such as components of bacterial walls and viral nuclear acids. A common response to such ligands is the activation of mitogen-activated protein kinase p38, whereas double-stranded viral RNA additionally induces the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Here we have shown that p38 and eIF2α phosphorylation represent two biochemical markers of the effects induced by N-(3-oxo-acyl)homoserine lactones, the secreted products of a number of Gram-negative bacteria, including the human opportunistic pathogen Pseudomonas aeruginosa. Furthermore, N-(3-oxo-dodecanoyl)homoserine lactone induced distension of mitochondria and the endoplasmic reticulum as well as c-jun gene transcription. These effects occurred in a wide variety of cell types including alveolar macrophages and bronchial epithelial cells, requiring the structural integrity of the lactone ring motif and its natural stereochemistry. These findings suggest that N-(3-oxo-acyl)homoserine lactones might be recognized by receptors of the innate immune system. However, we provide evidence that N-(3-oxo-dodecanoyl)homoserine lactone-mediated signaling does not require the presence of the canonical innate immune system receptors, Toll-like receptors, or two members of the NLR/Nod/Caterpillar family, Nod1 and Nod2. These data offer a new understanding of the effects of N-(3-oxo-dodecanoyl)homoserine lactone on host cells and its role in persistent airway infections caused by P. aeruginosa.


Pharmacology, Biochemistry and Behavior | 2008

MPZP: A novel small molecule corticotropin-releasing factor type 1 receptor (CRF1) antagonist

Heather N. Richardson; Yu Zhao; Éva M. Fekete; Cindy K. Funk; Peter Wirsching; Kim D. Janda; Eric P. Zorrilla; George F. Koob

The extrahypothalamic stress peptide corticotropin-releasing factor (CRF) system is an important regulator of behavioral responses to stress. Dysregulation of CRF and the CRF type 1 receptor (CRF(1)) system is hypothesized to underlie many stress-related disorders. Modulation of the CRF(1) system by non-peptide antagonists currently is being explored as a therapeutic approach for anxiety disorders and alcohol dependence. Here, we describe a new, less hydrophilic (cLogP approximately 2.95), small molecule, non-peptide CRF(1) antagonist with high affinity (K(i)=4.9 nM) and specificity for CRF(1) receptors: N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP). The compound was systemically administered to adult male rats in two behavioral models dependent on the CRF(1) system: defensive burying (0, 5, 20 mg/kg, n=6-11 for each dose) and alcohol dependence (0, 5, 10, 20 mg/kg, n=8 for each self-administration group). Acute administration of MPZP reduced burying behavior in the defensive burying model of active anxiety-like behavior. MPZP also attenuated withdrawal-induced excessive drinking in the self-administration model of alcohol dependence without affecting nondependent alcohol drinking or water consumption. The present findings support the proposed significance of the CRF(1) system in anxiety and alcohol dependence and introduce a promising new compound for further development in the treatment of alcohol dependence and stress-related disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens

Paul Wentworth; Anita D. Wentworth; Xueyong Zhu; Ian A. Wilson; Kim D. Janda; Albert Eschenmoser; Richard A. Lerner

Recent work in our laboratory showed that products formed by the antibody-catalyzed water-oxidation pathway can kill bacteria. Dihydrogen peroxide, the end product of this pathway, was found to be necessary, but not sufficient, for the observed efficiency of bacterial killing. The search for further bactericidal agents that might be formed along the pathway led to the recognition of an oxidant that, in its interaction with chemical probes, showed the chemical signature of ozone. Here we report that the antibody-catalyzed water-oxidation process is capable of regioselectively converting antibody-bound benzoic acid into para-hydroxy benzoic acid as well as regioselectively hydroxylating the 4-position of the phenyl ring of a single tryptophan residue located in the antibody molecule. We view the occurrence of these highly selective chemical reactions as evidence for the formation of a short-lived hydroxylating radical species within the antibody molecule. In line with our previously presented hypothesis according to which the singlet-oxygen (1O*2) induced antibody-catalyzed water-oxidation pathways proceeds via the formation of dihydrogen trioxide (H2O3), we now consider the possibility that the hydroxylating species might be the hydrotrioxy radical HO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{_{3}}^{{\bullet}}}}\end{equation*}\end{document}, and we point to the remarkable potential of this either H2O3- or O3-derivable species to act as a masked hydroxyl radical (HO•) in a biological environment.


Mini-reviews in Medicinal Chemistry | 2002

Peptidomimetics and Peptide Backbone Modifications

Jung Mo Ahn; Nicholas A. Boyle; Mary T. MacDonald; Kim D. Janda

The replacement of the amide bond in a peptide backbone is a widely used form of peptide mimicry. Several of the most common amide bond surrogates, including peptidomimetic work done in this laboratory, and their biological applications are presented in this review.

Collaboration


Dive into the Kim D. Janda's collaboration.

Top Co-Authors

Avatar

Richard A. Lerner

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Wirsching

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Wentworth

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael M. Meijler

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Mark S. Hixon

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Bin Zhou

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

George F. Koob

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Jon A. Ashley

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge