Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim F. Haselmann is active.

Publication


Featured researches published by Kim F. Haselmann.


Rapid Communications in Mass Spectrometry | 2012

Traveling‐wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross‐sections of human insulin oligomers

Rune Salbo; Matthew F. Bush; Helle Naver; Iain Campuzano; Carol V. Robinson; Ingrid Pettersson; Thomas J. D. Jørgensen; Kim F. Haselmann

RATIONALE The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of instrument parameters and calibration standards are crucial for obtaining accurate T-wave Ω-values. METHODS Human insulin and the fast-acting insulin aspart under native-like conditions (ammonium acetate, physiological pH) were analyzed on Waters SYNAPT G1 and G2 HDMS instruments. The calibrated T-wave Ω-values of insulin monomer, dimer, and hexamer ions were measured using many different combinations of denatured and native-like calibrants (masses between 2.85 and 256 kDa) and T-wave conditions. Drift-tube Ω-values were obtained on a modified SYNAPT G1. RESULTS Insulin T-wave Ω-values were measured at 26 combinations of T-wave velocity and amplitude. Optimal sets of calibrants were identified that yield Ω-values with minimal dependence on T-wave conditions and calibration plots with high R(2)-values. The T-wave Ω-values determined under conditions satisfying these criteria had absolute errors <2%. Structural differences between human insulin and fast-acting insulin aspart were probed with IM-MS. Insulin aspart monomers have increased flexibility, while hexamers are more compact than human insulin. CONCLUSIONS Accurate T-wave Ω-values that are indistinguishable from drift-tube values are obtained when using (1) native-like calibrants with masses that closely bracket that of the analyte, (2) T-wave velocities that maximize the R(2) of the calibration plot for those calibrants, and (3) at least three replicates at T-wave velocities that yield calibration plots with high R(2).


Rapid Communications in Mass Spectrometry | 2012

Traveling-wave ion mobility mass spectrometry of protein complexes

Rune Salbo; Matthew F. Bush; Helle Naver; Iain Campuzano; Carol V. Robinson; Ingrid Pettersson; Thomas J. D. Jørgensen; Kim F. Haselmann

RATIONALE The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of instrument parameters and calibration standards are crucial for obtaining accurate T-wave Ω-values. METHODS Human insulin and the fast-acting insulin aspart under native-like conditions (ammonium acetate, physiological pH) were analyzed on Waters SYNAPT G1 and G2 HDMS instruments. The calibrated T-wave Ω-values of insulin monomer, dimer, and hexamer ions were measured using many different combinations of denatured and native-like calibrants (masses between 2.85 and 256 kDa) and T-wave conditions. Drift-tube Ω-values were obtained on a modified SYNAPT G1. RESULTS Insulin T-wave Ω-values were measured at 26 combinations of T-wave velocity and amplitude. Optimal sets of calibrants were identified that yield Ω-values with minimal dependence on T-wave conditions and calibration plots with high R(2)-values. The T-wave Ω-values determined under conditions satisfying these criteria had absolute errors <2%. Structural differences between human insulin and fast-acting insulin aspart were probed with IM-MS. Insulin aspart monomers have increased flexibility, while hexamers are more compact than human insulin. CONCLUSIONS Accurate T-wave Ω-values that are indistinguishable from drift-tube values are obtained when using (1) native-like calibrants with masses that closely bracket that of the analyte, (2) T-wave velocities that maximize the R(2) of the calibration plot for those calibrants, and (3) at least three replicates at T-wave velocities that yield calibration plots with high R(2).


Analytical Chemistry | 2014

Simple Setup for Gas-Phase H/D Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation and Ion Mobility for Analysis of Polypeptide Structure on a Liquid Chromatographic Time Scale

Ulrik H. Mistarz; Jeffery Mark Brown; Kim F. Haselmann; Kasper D. Rand

Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.


Analytical Chemistry | 2016

Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

Christian Necip Cramer; Kim F. Haselmann; J. Olsen; Peter Kresten Nielsen

Unravelling of disulfide linkage patterns is a crucial part of protein characterization, whether it is for a previously uncharacterized protein in basic research or a recombinant pharmaceutical protein. In the biopharmaceutical industry, elucidation of the cysteine connectivities is a necessity to avoid disulfide scrambled and incorrectly folded forms in the final product. Mass spectrometry (MS) is a highly utilized analytical tool for this due to fast and accurate characterization. However, disulfide bonds being an additional covalent bond in the protein structure represent a challenge in protein sequencing by tandem MS (MS/MS). Electrochemical (EC) reduction of disulfide bonds has recently been demonstrated to provide efficient reduction efficiencies, significantly enhancing sequence coverages in online coupling with MS characterization. In this study, the potential use of EC disulfide reduction in combination with MS characterization for disulfide mapping was assessed. We employed two approaches based on (1) the high flexibility and instant information about the degree of reduction in infusion EC-MS to generate partially reduced species on the intact protein level and (2) the preserved link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we established a LC-EC-MS platform advantageous in disulfide characterization of complex and highly disulfide-bonded proteins such as human serum albumin (HSA) by online EC reduction of nonreduced proteolytic digestions.


Structure | 2016

Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

Ulrik H. Mistarz; Jeffery Mark Brown; Kim F. Haselmann; Kasper D. Rand

Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution conditions. Lysozyme ions bound by an oligosaccharide incorporated less deuterium than the unbound ion. Similarly, trypsin ions showed reduced deuterium uptake when bound by the peptide ligand vasopressin. Our results are in good agreement with crystal structures of the native protein complexes, and illustrate that gas-phase HDX-MS can provide a sensitive and simple approach to measure the number of heteroatom-bound non-amide side-chain hydrogens involved in the binding interface of biologically relevant protein complexes.


Analytical Chemistry | 2017

Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry

Christian Necip Cramer; Christian D. Kelstrup; J. Olsen; Kim F. Haselmann; Peter Kresten Nielsen

Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide bonds are present in complicated patterns. This includes the presence of disulfide bonds in nested patterns and closely spaced cysteines. Unambiguous mapping of such disulfide bonds typically requires advanced MS approaches. In this study, we exploited in-source reduction (ISR) of disulfide bonds during the electrospray ionization process to facilitate disulfide bond assignments. We successfully developed a LC-ISR-MS/MS methodology to use as an online and fully automated partial reduction procedure. Postcolumn partial reduction by ISR provided fast and easy identification of peptides involved in disulfide bonding from nonreduced proteolytic digests, due to the concurrent detection of disulfide-containing peptide species and their composing free peptides. Most importantly, intermediate partially reduced species containing only a single disulfide bond were also generated, from which unambiguous assignment of individual disulfide bonds could be done in species containing closely spaced disulfide bonds. The strength of this methodology was demonstrated by complete mapping of all four disulfide bonds in lysozyme and all 17 disulfide bonds in human serum albumin, including nested disulfide bonds and motifs of adjacent cysteine residues.


Journal of the American Society for Mass Spectrometry | 2017

Electron Transfer Dissociation of All Ions at All Times, MSETD, in a Quadrupole Time-of-Flight (Q-ToF) Mass Spectrometer

Christian Necip Cramer; Jeffery Mark Brown; Nick Tomczyk; Peter Kresten Nielsen; Kim F. Haselmann

AbstractData-independent mass spectral acquisition is particularly powerful when combined with ultra-performance liquid chromatography (LC) that provides excellent separation of most components present in a given sample. Data-independent analysis (DIA) consists of alternating full MS scans and scans with fragmentation of all ions within a selected m/z range, providing precursor masses and structure information, respectively. Fragmentation spectra are acquired either by sequential isolation and fragmentation of sliding m/z ranges or fragmenting all ions entering the MS instrument with no ion isolation, termed broadband DIA. Previously, broadband DIA has only been possible using collision induced dissociation (CID). Here, we report the use of electron transfer dissociation (ETD) as the fragmentation technique in broadband DIA instead of traditional collision induced dissociation (CID) during MSE. In this approach, which we refer to as MSETD, we implement the inherent benefits provided by ETD, such as discrimination of leucine and isoleucine, in a DIA setup. The combination of DIA analysis and ETD fragmentation with supplemental CID energy provides a powerful platform to obtain information on all precursors and their sequence from a single experiment. Graphical Abstractᅟ


Analytical Chemistry | 2018

Generic Workflow for Mapping of Complex Disulfide Bonds Using In-Source Reduction and Extracted Ion Chromatograms from Data-Dependent Mass Spectrometry

Christian Necip Cramer; Christian D. Kelstrup; J. Olsen; Kim F. Haselmann; Peter Kresten Nielsen

Disulfide bond mapping is a critical task in protein characterization as protein stability, structure, and function is dependent on correct cysteine connectivities. Mass spectrometry (MS) is the method of choice for this, providing fast and accurate characterization of simple disulfide bonds. Disulfide mapping by liquid chromatography tandem mass spectrometry (LC-MS/MS) is performed by identifying disulfide-bonded partner peptides following proteolytic digestion. With the recently introduced ability to assign complex disulfide patterns by online postcolumn partial disulfide reduction by in-source reduction (ISR) in a LC-ISR-MS/MS methodology, the main challenge is data analysis to ensure detection of both expected and unexpected disulfide species. In this study, we introduced a workflow for confident and unbiased mapping of complex disulfide bonds using the powerful combination of extracted ion chromatograms (XICs) of LC-ISR-MS/MS data. With postcolumn partial reduction, identical LC retention times of intact disulfide-bonded species, their constituting free peptides, and partially reduced variants were observed. Subsequent selective MS/MS fragmentation of all reduction products allowed confident identification of free cysteine-containing peptides using a classical shotgun proteomics database search. Matching XICs of the identified cysteine-containing peptides allowed identification of both predicted and unpredicted disulfide species, including unforeseen proteolytic specificities, missed cleavage sites, scrambled disulfide variants, and the presence of disulfide-entangled complexes. Applying this workflow, we successfully mapped the complex disulfide bonds of tertiapin and the epidermal growth factor (EGF) family members transforming growth factor α (TGFα) and EGF. In addition, we were able to characterize the disulfide patterns of the special disulfide fold of the TGFβ superfamily in an all-online methodology.


Analytical Chemistry | 2003

Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage.

Frank Kjeldsen; Kim F. Haselmann; Bogdan A. Budnik; Esben S. Sørensen; Roman A. Zubarev


Analytical Chemistry | 2003

Distinguishing of Ile/Leu Amino Acid Residues in the PP3 Protein by (Hot) Electron Capture Dissociation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Frank Kjeldsen; Kim F. Haselmann; Esben S. Sørensen; Roman A. Zubarev

Collaboration


Dive into the Kim F. Haselmann's collaboration.

Top Co-Authors

Avatar

J. Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Frank Kjeldsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogdan A. Budnik

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge