Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim H. Hebelstrup is active.

Publication


Featured researches published by Kim H. Hebelstrup.


Aob Plants | 2013

Nitric oxide in plants: an assessment of the current state of knowledge.

Luis A. J. Mur; Julien Mandon; Stefan Persijn; Simona M. Cristescu; I. E. Moshkov; G. V. Novikova; Michael A. Hall; Frans J. M. Harren; Kim H. Hebelstrup; Kapuganti Jagadis Gupta

BACKGROUND AND AIMS After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.


BMC Plant Biology | 2012

Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

Massimiliano Carciofi; Andreas Blennow; Susanne L. Jensen; Shahnoor S. Shaik; Anette Henriksen; Alain Buléon; Preben Bach Holm; Kim H. Hebelstrup

BackgroundStarch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss.ResultsIn this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants.ConclusionsThis is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from amylose-only grains may be due to an important physiological role played by amylopectin ordered crystallinity for rapid starch remobilization explaining the broad conservation in the plant kingdom of the amylopectin structure.


Journal of Experimental Botany | 2012

Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

Luis A. J. Mur; Anushen Sivakumaran; Julien Mandon; Simona M. Cristescu; Frans J. M. Harren; Kim H. Hebelstrup

Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.


FEBS Letters | 2011

Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide.

Kapuganti Jagadis Gupta; Kim H. Hebelstrup; Luis A. J. Mur; Abir U. Igamberdiev

Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non‐symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses.


Frontiers in Plant Science | 2013

Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

Luis A. J. Mur; Elena Prats; Sandra Pierre; Michael A. Hall; Kim H. Hebelstrup

Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.


Journal of Experimental Botany | 2012

Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana

Kim H. Hebelstrup; Martijn van Zanten; Julien Mandon; Laurentius A. C. J. Voesenek; Frans J. M. Harren; Simona M. Cristescu; Ian M. Møller; Luis A. J. Mur

Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.


Nature Communications | 2014

Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

Nethaji J. Gallage; Esben Halkjær Hansen; Rubini Kannangara; Carl Erik Olsen; Mohammed Saddik Motawia; Kirsten Jørgensen; Inger Bæksted Holme; Kim H. Hebelstrup; Michel Grisoni; Birger Lindberg Møller

Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.


Cereal Chemistry | 2013

Future Cereal Starch Bioengineering: Cereal Ancestors Encounter Gene Technology and Designer Enzymes

Andreas Blennow; Susanne L. Jensen; Shahnoor S. Shaik; Katsiaryna Skryhan; Massimiliano Carciofi; Preben Bach Holm; Kim H. Hebelstrup; Vanja Tanackovic

ABSTRACT The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome data from cereal ancestors can potentially allow for the reintroduction of cereal traits including, for e...


Plant Journal | 2013

Function of type–2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis

Mohamed Elhiti; Kim H. Hebelstrup; Aiming Wang; Chenlong Li; Yuhai Cui; Robert D. Hill; Claudio Stasolla

Suppression of Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2-/-), polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the sites of embryogenic tissue formation. These changes were also accompanied by a transcriptional upregulation of WUSCHEL (WUS) and SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK1), which are markers of embryogenic competence. The increased auxin levels in the GLB2-/- line were ascribed to the induction of several key enzymes of the tryptophan and IAA biosynthetic pathways, including ANTHRANILATE SYNTHASE (α subunit; ASA1), CYTOCHROME P79B2 (CYP79B2) and AMIDASE1 (AMI1). The effects of GLB2 suppression on somatic embryogenesis and IAA synthesis are mediated by increasing levels of nitric oxide (NO) within the embryogenic cells, which repress the expression of the transcription factor MYC2, a well-characterized repressor of the auxin biosynthetic pathway. A model is proposed in which the suppression of GLB2 reduces the degree of NO scavenging by oxyhemoglobin, thereby increasing the cellular NO concentration. The increased levels of NO repress the expression of MYC2, relieving the inhibition of IAA synthesis and increasing cellular IAA, which is the inductive signal promoting embryogenic competence. Besides providing a model for the induction phase of embryogenesis in vitro, these studies propose previously undescribed functions for plant hemoglobins.


Physiologia Plantarum | 2013

The role of nitric oxide and hemoglobin in plant development and morphogenesis

Kim H. Hebelstrup; Jay K. Shah; Abir U. Igamberdiev

Plant morphogenesis is regulated endogenously through phytohormones and other chemical signals, which may act either locally or distant from their place of synthesis. Nitric oxide (NO) is formed by a number of controlled processes in plant cells. It is a central signaling molecule with several effects on control of plant growth and development, such as shoot and root architecture. All plants are able to express non-symbiotic hemoglobins at low concentration. Their function is generally not related to oxygen transport or storage; instead they effectively oxidize NO to NO(3)(-) and thereby control the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants.

Collaboration


Dive into the Kim H. Hebelstrup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frans J. M. Harren

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Julien Mandon

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge