Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim-Kee Tan is active.

Publication


Featured researches published by Kim-Kee Tan.


Journal of Clinical Microbiology | 2015

Early Detection of Dengue Virus by Use of Reverse Transcription-Recombinase Polymerase Amplification

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Mohammed Bashar Danlami; Meng-Hooi Shu; Jefree Johari; Poh-Sim Hooi; David Brooks; Olaf Piepenburg; Oliver Nentwich; Annelies Wilder-Smith; Leticia Franco; Antonio Tenorio; Sazaly AbuBakar

ABSTRACT A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.


BMC Infectious Diseases | 2013

Detection of dengue viruses using reverse transcription-loop-mediated isothermal amplification

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Jefree Johari; Mohammed Bashar Danlami; Poh-Sim Hooi; Rafi Md-Esa; Sazaly AbuBakar

BackgroundEarly and rapid detection of dengue virus (DENV) infection during the febrile period is crucial for proper patient management and prevention of disease spread. An easy to perform and highly sensitive method is needed for routine implementation especially in the resource-limited rural healthcare settings where dengue is endemic.MethodsA single-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay with a set of nine primers was developed for the detection of all four DENV serotypes and their different genotypes. The sensitivity and specificity of the RT-LAMP were evaluated. The clinical applicability of RT-LAMP assay for detection of DENV RNA was assessed in a total of 305 sera of clinically-suspected dengue patients. The test results of RT-LAMP were statistically compared to those of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA).ResultsAcute DENV infection was confirmed in 171 samples (n = 305); 43.3% (74/171) and 46.8% (80/171) of the samples were positive for DENV using RT-LAMP and qRT-PCR, respectively. The combination of RT-LAMP with the dengue IgM and IgG ELISA increased detection of acute DENV infection to 97.7% (167/171), in comparison to only 70.8% (121/171) when dengue IgM and IgG ELISA alone were used. The RT-LAMP assays showed high concordance (κ = 0.939) with the qRT-PCR. The RT-LAMP assay detected up to 10 copies of virus RNA within an hour but 100% reproducibility (12/12) was achieved with 100 copies. There was no cross reactivity of RT-LAMP with other closely related arboviruses.ConclusionThe RT-LAMP assay developed in this study is sensitive, specific and simple to perform. The assay improved the detection of dengue when used in combination with serological methods.


BMC Evolutionary Biology | 2013

Dengue virus type 1 clade replacement in recurring homotypic outbreaks

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Jefree Johari; Meng-Hooi Shu; Mohammed Bashar Danlami; Juraina Abd-Jamil; NorAziyah MatRahim; Nor Muhammad Mahadi; Sazaly AbuBakar

BackgroundRecurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control.ResultsWe used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987–2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions.ConclusionDENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection.


BMC Genomics | 2015

Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis

Kim-Kee Tan; Yung-Chie Tan; Li-Yen Chang; Kok Wei Lee; Siti Sarah Nor'e; Wai-Yan Yee; Mohd Noor Mat Isa; Faizatul Lela Jafar; Chee-Choong Hoh; Sazaly AbuBakar

BackgroundBrucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis.ResultsSingle sequencing runs of each genome resulted in draft genome sequences of MY1483/09 and Phil1136/12, which covered 99.85% and 99.92% of the complete genome sequences, respectively. The B. melitensis genome sequences, and two B. abortus strains used as the outgroup strains, yielded a total of 13,728 SNP sites. Phylogenetic analysis using whole-genome SNPs and geographical distribution of the isolates revealed spatial clustering of the B. melitensis isolates into five genotypes, I, II, III, IV and V. The Mediterranean strains, identified as genotype I, occupied the basal node of the phylogenetic tree, suggesting that B. melitensis may have originated from the Mediterranean regions. All of the Asian B. melitensis strains clustered into genotype II with the SEA strains, including the two isolates sequenced in this study, forming a distinct clade denoted here as genotype IId. Genotypes III, IV and V of B. melitensis demonstrated a restricted geographical distribution, with genotype III representing the African lineage, genotype IV representing the European lineage and genotype V representing the American lineage.ConclusionWe showed that SNPs retrieved from the B. melitensis draft full genomes were sufficient to resolve the interspecies relationships between B. melitensis strains and to discriminate between the vaccine and endemic strains. Phylogeographic reconstruction of the history of B. melitensis global spread at a finer scale by using whole-genome SNP analyses supported the origin of all B. melitensis strains from the Mediterranean region. The possible global distribution of B. melitensis following the ancient trade routes was also consistent with whole-genome SNP phylogeny. The whole genome SNP phylogenetics analysis, hence is a powerful tool for intraspecies discrimination of closely related species.


BMC Complementary and Alternative Medicine | 2013

Extract of Scutellaria baicalensis inhibits dengue virus replication

Keivan Zandi; Tong-Hye Lim; Nor-Aziyah Rahim; Meng-Hooi Shu; Boon-Teong Teoh; Sing-Sin Sam; Mohammed-Bashar Danlami; Kim-Kee Tan; Sazaly AbuBakar

BackgroundScutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes.MethodsAqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry.ResultsThe IC50 values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC50 values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC50 that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC50 values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract).ConclusionsOur study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics.


PLOS ONE | 2015

Colorimetric Detection of Dengue by Single Tube Reverse-Transcription-Loop-Mediated Isothermal Amplification.

Yee Ling Lau; Meng-Yee Lai; Boon-Teong Teoh; Juraina Abd-Jamil; Jefree Johari; Sing-Sin Sam; Kim-Kee Tan; Sazaly AbuBakar

Dengue is usually diagnosed by isolation of the virus, serology or molecular diagnostic methods. Several commercial kits for the diagnosis of dengue are existing, but concerns have arisen regarding to the affordability and performance characteristics of these kits. Hence, the loop-mediated isothermal amplification (LAMP) is potentially ideal to be used especially in resource limited environments. Serum was collected from healthy donors and patients diagnosed with dengue infection. RNA extracted from the serum samples were tested by reverse-transcription-LAMP assay developed based on 3′-NCR gene sequences for DENV 1–4. Results were interpreted by a turbidity meter in real time or visually at the end of the assay. Sensitivity and specificity of RT-LAMP results were calculated and compared to qRT-PCR and ELISA. RT-LAMP is highly sensitive with the detection limit of 10 RNA copies for all serotypes. Dengue virus RNA was detected in all positive samples using RT-LAMP and none of the negative samples within 30–45 minutes. With continuing efforts in the optimization of this assay, RT-LAMP may provide a simple and reliable test for detecting DENV in areas where dengue is prevalent.


Ticks and Tick-borne Diseases | 2016

Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia

Jing Jing Khoo; Fezshin Chen; Kai Ling Kho; Azzy Iyzati Ahmad Shanizza; Fang-Shiang Lim; Kim-Kee Tan; Li-Yen Chang; Sazaly AbuBakar

Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation.


Scientific Reports | 2015

Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012

Kim-Kee Tan; Ava Kristy Sy; Amado Tandoc; Jing Jing Khoo; Syuhaida Sulaiman; Li-Yen Chang; Sazaly AbuBakar

Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV.


Infection, Genetics and Evolution | 2017

Disruption of predicted dengue virus type 3 major outbreak cycle coincided with switching of the dominant circulating virus genotype

Kim-Kee Tan; Nurul-Izzani Zulkifle; Juraina Abd-Jamil; Syuhaida Sulaiman; Che Norainon Yaacob; Noor Syahida Azizan; Nurul Asma Anati Che Mat Seri; Nur Izyan Samsudin; Nur Hidayana Mahfodz; Sazaly AbuBakar

Dengue is hyperendemic in most of Southeast Asia. In this region, all four dengue virus serotypes are persistently present. Major dengue outbreak cycle occurs in a cyclical pattern involving the different dengue virus serotypes. In Malaysia, since the 1980s, the major outbreak cycles have involved dengue virus type 3 (DENV3), dengue virus type 1 (DENV1) and dengue virus type 2 (DENV2), occurring in that order (DENV3/DENV1/DENV2). Only limited information on the DENV3 cycles, however, have been described. In the current study, we examined the major outbreak cycle involving DENV3 using data from 1985 to 2016. We examined the genetic diversity of DENV3 isolates obtained during the period when DENV3 was the dominant serotype and during the inter-dominant transmission period. Results obtained suggest that the typical DENV3/DENV1/DENV2 cyclical outbreak cycle in Malaysia has recently been disrupted. The last recorded major outbreak cycle involving DENV3 occurred in 2002, and the expected major outbreak cycle involving DENV3 in 2006-2012 did not materialize. DENV genome analyses revealed that DENV3 genotype II (DENV3/II) was the predominant DENV3 genotype (67%-100%) recovered between 1987 and 2002. DENV3 genotype I (DENV3/I) emerged in 2002 followed by the introduction of DENV3 genotype III (DENV3/III) in 2008. These newly emerged DENV3 genotypes replaced DENV3/II, but there was no major upsurge of DENV3 cases that accompanied the emergence of these viruses. DENV3 remained in the background of DENV1 and DENV2 until now. Virus genome sequence analysis suggested that intrinsic differences within the different dengue virus genotypes could have influenced the transmission efficiency of DENV3. Further studies and continuous monitoring of the virus are needed for better understanding of the DENV transmission dynamics in hyperendemic regions.


Scientific Reports | 2016

The Use of NS1 Rapid Diagnostic Test and qRT-PCR to Complement IgM ELISA for Improved Dengue Diagnosis from Single Specimen

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Jefree Johari; Juraina Abd-Jamil; Poh-Sim Hooi; Sazaly AbuBakar

Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2–94.8%) than in those from primary dengue (21.7–64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.

Collaboration


Dive into the Kim-Kee Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge