Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim L.R. Brouwer is active.

Publication


Featured researches published by Kim L.R. Brouwer.


Clinical Pharmacology & Therapeutics | 2015

Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group

Kim L.R. Brouwer; Lauren M. Aleksunes; Barbara Brandys; George P. Giacoia; Gregory T. Knipp; Viera Lukacova; Bernd Meibohm; Sanjay K. Nigam; Michael Rieder; Saskia N. de Wildt

The critical importance of membrane‐bound transporters in pharmacotherapy is widely recognized, but little is known about drug transporter activity in children. In this white paper, the Pediatric Transporter Working Group presents a systematic review of the ontogeny of clinically relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver, and kidney. Different developmental patterns for individual transporters emerge, but much remains unknown. Recommendations to increase our understanding of membrane transporters in pediatric pharmacotherapy are presented.


Clinical Pharmacology & Therapeutics | 2014

Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity.

Kyunghee Yang; Jeffrey L. Woodhead; Paul B. Watkins; Brett A. Howell; Kim L.R. Brouwer

Troglitazone (TGZ) causes delayed, life‐threatening drug‐induced liver injury in some patients but was not hepatotoxic in rats. This study investigated altered bile acid homeostasis as a mechanism of TGZ hepatotoxicity using a systems pharmacology model incorporating drug/metabolite disposition, bile acid physiology/pathophysiology, hepatocyte life cycle, and liver injury biomarkers. In the simulated human population, TGZ (200–600 mg/day × 6 months) resulted in delayed increases in serum alanine transaminase >3× the upper limit of normal in 0.3–5.1%, with concomitant bilirubin elevations >2× the upper limit of normal in 0.3–3.6%, of the population. By contrast, pioglitazone (15–45 mg/day × 6 months) did not elicit hepatotoxicity, consistent with clinical data. TGZ was not hepatotoxic in the simulated rat population. In summary, mechanistic modeling based only on bile acid effects accurately predicted the incidence, delayed presentation, and species differences in TGZ hepatotoxicity, in addition to predicting the relative liver safety of pioglitazone. Systems pharmacology models integrating physiology and experimental data can evaluate drug‐induced liver injury mechanisms and may be useful to predict the hepatotoxic potential of drug candidates.


Clinical Pharmacology & Therapeutics | 2015

Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis

Brian C. Ferslew; C. K. Johnston; E. Tsakalozou; A. S. Bridges; Mary F. Paine; Wei Jia; Paul W. Stewart; A. S. Barritt; Kim L.R. Brouwer

The functional impact of altered drug transport protein expression on the systemic pharmacokinetics of morphine, hepatically derived morphine glucuronide (morphine‐3‐ and morphine‐6‐glucuronide), and fasting bile acids was evaluated in patients with biopsy‐confirmed nonalcoholic steatohepatitis (NASH) compared to healthy subjects. The maximum concentration (Cmax) and area under the concentration‐time curve (AUC0‐last) of morphine glucuronide in serum were increased in NASH patients (343 vs. 225 nM and 58.8 vs. 37.2 µM*min, respectively; P ≤ 0.005); morphine pharmacokinetics did not differ between groups. Linear regression analyses detected an association of NASH severity with increased morphine glucuronide Cmax and AUC0‐last (P < 0.001). Fasting serum glycocholate, taurocholate, and total bile acid concentrations were associated with NASH severity (P < 0.006). Increased hepatic basolateral efflux of morphine glucuronide and bile acids is consistent with altered hepatic transport protein expression in patients with NASH and may partially explain differences in efficacy and/or toxicity of some highly transported anionic drugs/metabolites in this patient population.


Journal of Pharmacology and Experimental Therapeutics | 2015

Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury.

Kyunghee Yang; Nathan D. Pfeifer; Kathleen Köck; Kim L.R. Brouwer

The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance–associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug’s inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.


Drug Metabolism and Disposition | 2015

Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors

Matthew A. Welch; Kathleen Köck; Thomas J. Urban; Kim L.R. Brouwer; Peter W. Swaan

Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.


Toxicological Sciences | 2017

Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors

Jeffrey L. Woodhead; William J. Brock; Sharin E. Roth; Susan E. Shoaf; Kim L.R. Brouwer; Rachel J. Church; Tom N. Grammatopoulos; Linsey Stiles; Scott Q. Siler; Brett A. Howell; Merrie Mosedale; Paul B. Watkins; Lisl K.M. Shoda

Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30  mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies.


Journal of Pharmaceutical Sciences | 2016

Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury.

Kyunghee Yang; Cen Guo; Jeffrey L. Woodhead; Robert L. St. Claire; Paul B. Watkins; Scott Q. Siler; Brett A. Howell; Kim L.R. Brouwer

Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.


Toxicological Sciences | 2016

Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?

Jason R. Slizgi; Yang Lu; Kenneth R. Brouwer; Robert L. St. Claire; Kimberly M. Freeman; Maxwell Pan; William J. Brock; Kim L.R. Brouwer

Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.


Journal of Pharmaceutical Sciences | 2017

Effect of Liver Disease on Hepatic Transporter Expression and Function

Nilay Thakkar; Jason R. Slizgi; Kim L.R. Brouwer

Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.


Journal of Pharmacology and Experimental Therapeutics | 2016

Prediction of altered bile acid disposition due to inhibition of multiple transporters: An integrated approach using sandwich-cultured hepatocytes, mechanistic modeling and simulation

Cen Guo; Kyunghee Yang; Kenneth R. Brouwer; Robert L. St. Claire; Kim L.R. Brouwer

Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA). TCA pharmacokinetic parameters were estimated by mechanistic modeling using sandwich-cultured human hepatocyte data with protein in the medium. Uptake, basolateral efflux, and biliary clearance estimates were 0.63, 0.034, and 0.074 mL/min/g liver, respectively. Cellular total TCA concentrations (Ct,Cells) were selected as the model output based on sensitivity analysis. Monte Carlo simulations of TCA Ct,Cells in the presence of model inhibitors (telmisartan and bosentan) were performed using inhibition constants for TCA transporters and inhibitor concentrations, including cellular total inhibitor concentrations ([I]t,cell) or unbound concentrations, and cytosolic total or unbound concentrations. For telmisartan, the model prediction was accurate with an average fold error (AFE) of 0.99–1.0 when unbound inhibitor concentration ([I]u) was used; accuracy dropped when total inhibitor concentration ([I]t) was used. For bosentan, AFE was 1.2–1.3 using either [I]u or [I]t. This difference was evaluated by sensitivity analysis of the cellular unbound fraction of inhibitor (fu,cell,inhibitor), which revealed higher sensitivity of fu,cell,inhibitor for predicting TCA Ct,Cells when inhibitors exhibited larger ([I]t,cell/IC50) values. In conclusion, this study demonstrated the applicability of a framework to predict hepatocellular bile acid concentrations due to drug-mediated inhibition of transporters using mechanistic modeling and cytosolic or cellular unbound concentrations.

Collaboration


Dive into the Kim L.R. Brouwer's collaboration.

Top Co-Authors

Avatar

Kyunghee Yang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian C. Ferslew

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jason R. Slizgi

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Watkins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Paul W. Stewart

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cen Guo

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Izna Ali

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge