Kim L. Roberts
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim L. Roberts.
Trends in Microbiology | 2008
Kim L. Roberts; Geoffrey L. Smith
Vaccinia virus is the smallpox vaccine. It is the most intensively studied poxvirus, and its study has provided important insights about virus replication in general and the interactions of viruses with the host cell and immune system. Here, the entry, morphogenesis and dissemination of vaccinia virus are considered. These processes are complicated by the existence of two infectious vaccinia virus particles, called intracellular mature virus (IMV) and extracellular enveloped virus (EEV). The IMV particle is surrounded by one membrane, and the EEV particle comprises an IMV particle enclosed within a second lipid membrane containing several viral antigens. Consequently, these virions have different biological properties and play different roles in the virus life cycle.
PLOS Pathogens | 2009
Margaret A. Scull; Celia Santos; Kim L. Roberts; Elena Bordonali; Kanta Subbarao; Wendy S. Barclay; Raymond J. Pickles
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.
Journal of General Virology | 2013
Holly Shelton; Kim L. Roberts; Eleonora Molesti; Nigel J. Temperton; Wendy S. Barclay
The H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.
Journal of Virology | 2013
Deena Blumenkrantz; Kim L. Roberts; Holly Shelton; Samantha Lycett; Wendy S. Barclay
ABSTRACT H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.
Journal of General Virology | 2011
Kim L. Roberts; Holly Shelton; Margaret A. Scull; Raymond J. Pickles; Wendy S. Barclay
Influenza virus attaches to host cells by sialic acid (SA). Human influenza viruses show preferential affinity for α2,6-linked SA, whereas avian influenza viruses bind α2,3-linked SA. In this study, mutation of the haemagglutinin receptor-binding site of a human H3N2 influenza A virus to switch binding to α2,3-linked SA did not eliminate infection of ferrets but prevented transmission, even in a co-housed model. The mutant virus was shed from the noses of ferrets directly inoculated with virus in the same amounts and for the same length of time as wild-type virus. Mutant virus infection was localized to the same anatomical regions of the upper respiratory tract of directly inoculated animals. Interestingly, wild-type virus was more readily neutralized than the mutant virus in vitro by ferret nasal washes containing mucus. Moreover after inoculation of equal doses, the mutant virus grew poorly in ex vivo ferret nasal turbinate tissue compared with wild-type virus. The dose of mutant virus required to establish infection in the directly inoculated ferrets was 40-fold higher than for wild-type virus. It was concluded that minimum infectious dose is a predictor of virus transmissibility and it is suggested that, as virus passes from one host to another through stringent environmental conditions, viruses with a preference for α2,3-linked SA are unlikely to inoculate a new mammalian host in sufficient quantities to initiate a productive infection.
Journal of Biological Chemistry | 2014
Nan Jia; Wendy S. Barclay; Kim L. Roberts; Hui-Ling Yen; Renee W. Y. Chan; Alfred King-Yin Lam; Gillian M. Air; J. S. Malik Peiris; Anne Dell; John M. Nicholls; Stuart M. Haslam
Background: The ferret is a key animal model to study the transmission characteristics of influenza viruses. Results: Characterization of ferret respiratory tract tissues identified influenza virus glycan receptors. Conclusion: Species-specific influenza virus glycan receptors were identified. Significance: Our findings provide new insights into the usefulness of ferrets in the study of influenza virus infection. The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2–3- or α2–6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2–3 binding being associated with avian influenza viruses and α2–6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2–3- and α2–6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcβ1–4)Galβ1–4GlcNAc) and sialylated N,N′-diacetyllactosamine (NeuAcα2–6GalNAcβ1–4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection.
PLOS ONE | 2012
Kim L. Roberts; Holly Shelton; Peter Stilwell; Wendy S. Barclay
During the early phase of the 2009 influenza pandemic, attempts were made to contain the spread of the virus. Success of reactive control measures may be compromised if the proportion of transmission that occurs before overt clinical symptoms develop is high. In this study we investigated the timing of transmission of an early prototypic strain of pandemic H1N1 2009 influenza virus in the ferret model. Ferrets are the only animal model in which this can be assessed because they display typical influenza-like clinical signs including fever and sneezing after infection. We assessed transmission from infected animals to sentinels that were placed either in direct contact or in adjacent cages, the latter reflecting the respiratory droplet (RD) transmission route. We found that pre-symptomatic influenza transmission occurred via both contact and respiratory droplet exposure before the earliest clinical sign, fever, developed. Three of 3 animals exposed in direct contact between day 1 and 2 after infection of the donor animals became infected, and 2/3 of the animals exposed at this time period by the RD route acquired the infection, with the third animal becoming seropositive indicating either a low level infection or significant exposure. Moreover, this efficient transmission did not temporally correlate with respiratory symptoms, such as coughs and sneezes, but rather with the peak viral titre in the nose. Indeed respiratory droplet transmission did not occur late in infection, even though this was when sneezing and coughing were most apparent. None of the 3 animals exposed at this time by the RD route became infected and these animals remained seronegative at the end of the experiment. These data have important implications for pandemic planning strategies and suggest that successful containment is highly unlikely for a human-adapted influenza virus that transmits efficiently within a population.
Journal of General Virology | 2009
Kim L. Roberts; Adrien Breiman; Gemma C. Carter; Helen A. Ewles; Michael Hollinshead; Mansun Law; Geoffrey L. Smith
The extracellular enveloped virus (EEV) form of vaccinia virus (VACV) is surrounded by two lipid envelopes. This presents a topological problem for virus entry into cells, because a classical fusion event would only release a virion surrounded by a single envelope into the cell. Recently, we described a mechanism in which the EEV outer membrane is disrupted following interaction with glycosaminoglycans (GAGs) on the cell surface and thus allowing fusion of the inner membrane with the plasma membrane and penetration of a naked core into the cytosol. Here we show that both the B5 and A34 viral glycoproteins are required for this process. A34 is required to recruit B5 into the EEV membrane and B5 acts as a molecular switch to control EEV membrane rupture upon exposure to GAGs. Analysis of VACV strains expressing mutated B5 proteins demonstrated that the acidic stalk region between the transmembrane anchor sequence and the fourth short consensus repeat of B5 are critical for GAG-induced membrane rupture. Furthermore, the interaction between B5 and A34 can be disrupted by the addition of polyanions (GAGs) and polycations, but only the former induce membrane rupture. Based on these data we propose a revised model for EEV entry.
PLOS ONE | 2011
Neeltje van Doremalen; Holly Shelton; Kim L. Roberts; Ian M. Jones; Ray J. Pickles; Catherine Thompson; Wendy S. Barclay
The first pandemic of the 21st century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.
Journal of General Virology | 2012
Holly Shelton; Matthew Smith; Lorian Hartgroves; Peter Stilwell; Kim L. Roberts; Ben Johnson; Wendy S. Barclay
Influenza viruses readily mutate by accumulating point mutations and also by reassortment in which they acquire whole gene segments from another virus in a co-infected host. The NS1 gene is a major virulence factor of influenza A virus. The effects of changes in NS1 sequence depend on the influenza polymerase constellation. Here, we investigated the consequences of a virus with the polymerase of pandemic H1N1 2009 acquiring an NS gene segment derived from a seasonal influenza A H3N2 virus, a combination that might arise during natural reassortment of viruses that currently circulate in humans. We generated recombinant influenza viruses with surface HA and NA genes and matrix M gene segment from A/PR/8/34 virus, but different combinations of polymerase and NS genes. Thus, any changes in phenotype were not due to differences in receptor use, entry, uncoating or virus release. In Madin–Darby canine kidney (MDCK) cells, the virus with the NS gene from the H3N2 parent showed enhanced replication, probably a result of increased control of the interferon response. However, in mice the same virus was attenuated in comparison with the virus containing homologous pH1N1 polymerase and NS genes. Levels of viral RNA during single-cycles of replication were lower for the virus with H3N2 NS, and this virus reached lower titres in the lungs of infected mice. Thus, virus with pH1N1 polymerase genes did not increase its virulence by acquiring the H3N2 NS gene segment, and MDCK cells were a poor predictor of the outcome of infection in vivo.