Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim Olofsson is active.

Publication


Featured researches published by Kim Olofsson.


Biotechnology for Biofuels | 2008

A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks

Kim Olofsson; Magnus Bertilsson; Gunnar Lidén

Simultaneous saccharification and fermentation (SSF) is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH) for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.


Journal of Biotechnology | 2008

Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.

Kim Olofsson; Andreas Rudolf; Gunnar Lidén

Wheat straw is an abundant agricultural residue which can be used as a raw material for bioethanol production. Due to the high xylan content in wheat straw, fermentation of both xylose and glucose is crucial to meet desired overall yields of ethanol. In the present work a recombinant xylose fermenting strain of Saccharomyces cerevisiae, TMB3400, cultivated aerobically on wheat straw hydrolysate, was used in simultaneous saccharification and fermentation (SSF) of steam pretreated wheat straw. The influence of fermentation strategy and temperature was studied in relation to xylose consumption, ethanol formation and by-product formation. In addition, model SSF experiments were made to further investigate the influence of temperature on xylose fermentation and by-product formation. In particular for SSF at the highest value of fibre content tested (9% water insoluble substance, WIS), it was found that a fed-batch strategy was clearly superior to the batch process in terms of ethanol yield, where the fed-batch gave 71% of the theoretical yield (based on all available sugars) in comparison to merely 59% for the batch. Higher ethanol yields, close to 80%, were obtained at a WIS-content of 7%. Xylose fermentation significantly contributed to the overall ethanol yields. The choice of temperature in the range 30-37 degrees C was found to be important, especially at higher contents of water insoluble solids (WIS). The optimum temperature was found to be 34 degrees C for the raw material and yeast strain studied. Model SSF experiments with defined medium showed strong temperature effects on the xylose uptake rate and xylitol yield.


Biotechnology for Biofuels | 2009

Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce.

Magnus Bertilsson; Kim Olofsson; Gunnar Lidén

BackgroundSimultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficulty is to obtain an efficient pentose uptake in the presence of high glucose and inhibitor concentrations. Initial glucose present in pretreated spruce decreases the xylose utilization by yeast, due to competitive inhibition of sugar transport. In the current work, prefermentation was studied as a possible means to overcome the problem of competitive inhibition. The free hexoses, initially present in the slurry, were in these experiments fermented before adding the enzymes, thereby lowering the glucose concentration.ResultsThis work shows that a high degree of xylose conversion and high ethanol yields can be achieved in SSF of pretreated spruce with a xylose fermenting strain of Saccharomyces cerevisiae (TMB3400) at 7% and 10% water insoluble solids (WIS). Prefermentation and fed-batch operation, both separately and in combination, improved xylose utilization. Up to 77% xylose utilization and 85% of theoretical ethanol yield (based on total sugars), giving a final ethanol concentration of 45 g L-1, were obtained in fed-batch SSF at 10% WIS when prefermentation was applied.ConclusionClearly, the mode of fermentation has a high impact on the xylose conversion by yeast in SSF. Prefermentation enhances xylose uptake most likely because of the reduced transport inhibition, in both batch and fed-batch operation. The process significance of this will be even greater for xylose-rich feedstocks.


Biotechnology for Biofuels | 2010

Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding

Kim Olofsson; Benny Palmqvist; Gunnar Lidén

BackgroundSimultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of Saccharomyces cerevisiae (TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw.ResultsBy using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g-1.ConclusionA combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.


Journal of Biotechnology | 2010

Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production.

Kim Olofsson; Magnus Wiman; Gunnar Lidén

Simultaneous saccharification and fermentation (SSF) is an interesting option for ethanol production from lignocellulosic materials. To meet desired overall yields during ethanol production from lignocellulosic materials, it is important to use both hexoses and pentoses. This can be achieved by co-fermentation of sugars in SSF, so called SSCF (simultaneous saccharification and co-fermentation), using genetically modified yeast strains. However, high concentration of glucose in the pretreated material makes xylose utilization challenging due to competitive inhibition of sugar transport. The present work demonstrates a new approach for controlling the glucose release rate from the enzymatic hydrolysis by controlling the addition of enzymes in SSCF using spruce as the raw material. Enzyme kinetics and yeast sugar uptake rates for a recombinant xylose utilizing strain of Saccharomyces cerevisiae, TMB3400, were determined in a real hydrolyzate medium. A simplified model for glucose release and uptake was created, to be used as a tool for control of the glucose concentration in a SSCF process. With help of this model, an SSCF process with efficient co-utilization of glucose and xylose was successfully designed. The results showed that the total xylose uptake could be increased from 40% to as much as 80% by controlling the enzyme feed.


Enzyme and Microbial Technology | 2011

The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw

César Fonseca; Kim Olofsson; Carla Ferreira; David Runquist; Luís L. Fonseca; Bärbel Hahn-Hägerdal; Gunnar Lidén

Ethanolic fermentation of lignocellulose raw materials requires industrial xylose-fermenting strains capable of complete and efficient D-xylose consumption. A central question in xylose fermentation by Saccharomyces cerevisiae engineered for xylose fermentation is to improve the xylose uptake. In the current study, the glucose/xylose facilitator Gxf1 from Candida intermedia, was expressed in three different xylose-fermenting S. cerevisiae strains of industrial origin. The in vivo effect on aerobic xylose growth and the initial xylose uptake rate were assessed. The expression of Gxf1 resulted in enhanced aerobic xylose growth only for the TMB3400 based strain. It displayed more than a 2-fold higher affinity for D-xylose than the parental strain and approximately 2-fold higher initial specific growth rate at 4 g/L D-xylose. Enhanced xylose consumption was furthermore observed when the GXF1-strain was assessed in simultaneous saccharification and co-fermentation (SSCF) of pretreated wheat straw. However, the ethanol yield remained unchanged due to increased by-product formation. Metabolic flux analysis suggested that the expression of the Gxf1 transporter had shifted the control of xylose catabolism from transport to the NAD(+) dependent oxidation of xylitol to xylulose.


AMB Express | 2011

A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw.

Kim Olofsson; David Runquist; Bärbel Hahn-Hägerdal; Gunnar Lidén

Genetically engineered Saccharomyces cerevisiae strains are able to ferment xylose present in lignocellulosic biomass. However, better xylose fermenting strains are required to reach complete xylose uptake in simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic hydrolyzates. In the current study, haploid Saccharomyces cerevisiae strains expressing a heterologous xylose pathway including either the native xylose reductase (XR) from P. stipiti s, a mutated variant of XR (mXR) with altered co-factor preference, a glucose/xylose facilitator (Gxf1) from Candida intermedia or both mXR and Gxf1 were assessed in SSCF of acid-pretreated non-detoxified wheat straw. The xylose conversion in SSCF was doubled with the S. cerevisiae strain expressing mXR compared to the isogenic strain expressing the native XR, converting 76% and 38%, respectively. The xylitol yield was less than half using mXR in comparison with the native variant. As a result of this, the ethanol yield increased from 0.33 to 0.39 g g-1 when the native XR was replaced by mXR. In contrast, the expression of Gxf1 only slightly increased the xylose uptake, and did not increase the ethanol production. The results suggest that ethanolic xylose fermentation under SSCF conditions is controlled primarily by the XR activity and to a much lesser extent by xylose transport.


Process Biochemistry | 2012

Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF

Magnus Ask; Kim Olofsson; Tommaso Di Felice; Laura Ruohonen; Merja Penttilä; Gunnar Lidén; Lisbeth Olsson


World Congress on Industrial Biotechnology and Bioprocessing, May 8 - 11, 2011, Toronto, Canada | 2011

The effect of pretreatment harshness on separate hydrolysis and fermentation of giant reed by a xylose-consuming Saccharomyces cerevisiae strain

Magnus Ask; Kim Olofsson; Diego Gallucci; Laura Ruohonen; Gunnar Lidén; Lisbeth Olsson


Society for Industrial Microbiology, 60th annual meeting | 2010

A comparison between simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) of spruce and giant reed using two Saccharomyces cerevisiae strains

Magnus Ask; Kim Olofsson; Karin Hägglund; Tommaso Di Felice; Laura Ruohonen; Gunnar Lidén; Lisbeth Olsson

Collaboration


Dive into the Kim Olofsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisbeth Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Magnus Ask

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Laura Ruohonen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge