Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim Riddell is active.

Publication


Featured researches published by Kim Riddell.


Mbio | 2013

The Epidemic of Extended-Spectrum-β-Lactamase-Producing Escherichia coli ST131 Is Driven by a Single Highly Pathogenic Subclone, H30-Rx

Lance B. Price; James R. Johnson; Maliha Aziz; Connie Clabots; Brian Johnston; Veronika Tchesnokova; Lora Nordstrom; Maria Billig; Sujay Chattopadhyay; Marc Stegger; Paal Skytt Andersen; Talima Pearson; Kim Riddell; Peggy Rogers; Delia Scholes; Barbara C. Kahl; Paul Keim; Evgeni V. Sokurenko

ABSTRACT The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx. IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics. We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics.


The Journal of Infectious Diseases | 2013

Abrupt Emergence of a Single Dominant Multidrug-Resistant Strain of Escherichia coli

James R. Johnson; Veronika Tchesnokova; Brian Johnston; Connie Clabots; Pacita L. Roberts; Mariya Billig; Kim Riddell; Peggy Rogers; Xuan Qin; Susan M. Butler-Wu; Lance B. Price; Maliha Aziz; Marie Hélène Nicolas-Chanoine; Chitrita DebRoy; Ari Robicsek; Glen T. Hansen; Carl Urban; Joanne L. Platell; Darren J. Trott; George G. Zhanel; Scott J. Weissman; Brad T. Cookson; Ferric C. Fang; Ajit P. Limaye; Delia Scholes; Sujay Chattopadhyay; David C. Hooper; Evgeni V. Sokurenko

BACKGROUND Fluoroquinolone-resistant Escherichia coli are increasingly prevalent. Their clonal origins--potentially critical for control efforts--remain undefined. METHODS Antimicrobial resistance profiles and fine clonal structure were determined for 236 diverse-source historical (1967-2009) E. coli isolates representing sequence type ST131 and 853 recent (2010-2011) consecutive E. coli isolates from 5 clinical laboratories in Seattle, Washington, and Minneapolis, Minnesota. Clonal structure was resolved based on fimH sequence (fimbrial adhesin gene: H subclone assignments), multilocus sequence typing, gyrA and parC sequence (fluoroquinolone resistance-determining loci), and pulsed-field gel electrophoresis. RESULTS Of the recent fluoroquinolone-resistant clinical isolates, 52% represented a single ST131 subclonal lineage, H30, which expanded abruptly after 2000. This subclone had a unique and conserved gyrA/parC allele combination, supporting its tight clonality. Unlike other ST131 subclones, H30 was significantly associated with fluoroquinolone resistance and was the most prevalent subclone among current E. coli clinical isolates, overall (10.4%) and within every resistance category (11%-52%). CONCLUSIONS Most current fluoroquinolone-resistant E. coli clinical isolates, and the largest share of multidrug-resistant isolates, represent a highly clonal subgroup that likely originated from a single rapidly expanded and disseminated ST131 strain. Focused attention to this strain will be required to control the fluoroquinolone and multidrug-resistant E. coli epidemic.


Applied and Environmental Microbiology | 2012

High-Resolution Two-Locus Clonal Typing of Extraintestinal Pathogenic Escherichia coli

Scott J. Weissman; James R. Johnson; Veronika Tchesnokova; Mariya Billig; Daniel E. Dykhuizen; Kim Riddell; Peggy Rogers; Xuan Qin; Susan M. Butler-Wu; Brad T. Cookson; Ferric C. Fang; Delia Scholes; Sujay Chattopadhyay; Evgeni V. Sokurenko

ABSTRACT Multilocus sequence typing (MLST) is usually based on the sequencing of 5 to 8 housekeeping loci in the bacterial chromosome and has provided detailed descriptions of the population structure of bacterial species important to human health. However, even strains with identical MLST profiles (known as sequence types or STs) may possess distinct genotypes, which enable different eco- or pathotypic lifestyles. Here we describe a two-locus, sequence-based typing scheme for Escherichia coli that utilizes a 489-nucleotide (nt) internal fragment of fimH (encoding the type 1 fimbrial adhesin) and the 469-nt internal fumC fragment used in standard MLST. Based on sequence typing of 191 model commensal and pathogenic isolates plus 853 freshly isolated clinical E. coli strains, this 2-locus approach—which we call CH (fum C /fim H ) typing—consistently yielded more haplotypes than standard 7-locus MLST, splitting large STs into multiple clonal subgroups and often distinguishing different within-ST eco- and pathotypes. Furthermore, specific CH profiles corresponded to specific STs, or ST complexes, with 95% accuracy, allowing excellent prediction of MLST-based profiles. Thus, 2-locus CH typing provides a genotyping tool for molecular epidemiology analysis that is more economical than standard 7-locus MLST but has superior clonal discrimination power and, at the same time, corresponds closely to MLST-based clonal groupings.


Journal of Clinical Microbiology | 2013

Predictive Diagnostics for Escherichia coli Infections Based on the Clonal Association of Antimicrobial Resistance and Clinical Outcome

Veronika Tchesnokova; Mariya Billig; Sujay Chattopadhyay; Elena V. Linardopoulou; Pacita L. Roberts; Veronika Skrivankova; Brian Johnston; Alena Gileva; Irina Igusheva; Angus Toland; Kim Riddell; Peggy Rogers; Xuan Qin; Susan M. Butler-Wu; Brad T. Cookson; Ferric C. Fang; Barbara C. Kahl; Lance B. Price; Scott J. Weissman; Ajit P. Limaye; Delia Scholes; James R. Johnson; Evgeni V. Sokurenko

ABSTRACT The ability to identify bacterial pathogens at the subspecies level in clinical diagnostics is currently limited. We investigated whether splitting Escherichia coli species into clonal groups (clonotypes) predicts antimicrobial susceptibility or clinical outcome. A total of 1,679 extraintestinal E. coli isolates (collected from 2010 to 2012) were collected from one German and 5 U.S. clinical microbiology laboratories. Clonotype identity was determined by fumC and fimH (CH) sequencing. The associations of clonotype with antimicrobial susceptibility and clinical variables were evaluated. CH typing divided the isolates into >200 CH clonotypes, with 93% of the isolates belonging to clonotypes with ≥2 isolates. Antimicrobial susceptibility varied substantially among clonotypes but was consistent across different locations. Clonotype-guided antimicrobial selection significantly reduced “drug-bug” mismatch compared to that which occurs with the use of conventional empirical therapy. With trimethoprim-sulfamethoxazole and fluoroquinolones, the drug-bug mismatch was predicted to decrease 62% and 78%, respectively. Recurrent or persistent urinary tract infection and clinical sepsis were significantly correlated with specific clonotypes, especially with CH40-30 (also known as H30), a recently described clonotype within sequence type 131 (ST131). We were able to clonotype directly from patient urine samples within 1 to 3 h of obtaining the specimen. In E. coli, subspecies-level identification by clonotyping can be used to significantly improve empirical predictions of antimicrobial susceptibility and clinical outcomes in a timely manner.


Clinical Infectious Diseases | 2016

The Pandemic H30 Subclone of Escherichia coli Sequence Type 131 Is Associated With Persistent Infections and Adverse Outcomes Independent From Its Multidrug Resistance and Associations With Compromised Hosts

James R. Johnson; Paul Thuras; Brian Johnston; Scott J. Weissman; Ajit P. Limaye; Kim Riddell; Delia Scholes; Veronika Tchesnokova; Evgeni V. Sokurenko

BACKGROUND The H30 subclone within Escherichia coli sequence type 131 (ST131-H30) has emerged rapidly to become the leading antibiotic-resistant E. coli strain. Hypervirulence, multidrug resistance, and opportunism have been proposed as explanations for its epidemic success. METHODS We assessed 1133 consecutive unique E. coli clinical isolates from 5 medical centers (2010-2011) for H30 genotype, which we compared with epidemiological and clinical data extracted from medical records by blinded reviewers. Using univariable and multivariable logistic regression analysis, we explored associations of H30 with underlying host characteristics, clinical presentations, management, and outcomes, adjusting for host characteristics. RESULTS The H30 (n = 107) isolates were associated with hosts who were older, male, locally and systemically compromised, and healthcare and antibiotic exposed. With multivariable adjustment for host factors, H30 lost its numerous significant univariable associations with initial clinical presentation, but remained strongly associated with clinical persistence (odds ratio [OR], 3.47; 95% confidence interval [CI], 1.89-6.37), microbiological persistence (OR, 4.46; 95% CI, 2.38-8.38), subsequent hospital admission (OR, 2.68; 95% CI, 1.35-5.33), and subsequent new infection (OR, 1.73; 95% CI, 1.01-3.00). These host-adjusted associations remained strong even with added adjustment for resistance to the initially prescribed antibiotics, and the adverse outcome associations (subsequent hospital admission, new infection) were independent of clinical and microbiological persistence. CONCLUSIONS In addition to targeting compromised hosts and resisting multiple antibiotics, H30 isolates may have an intrinsic ability to cause highly persistent infections and later adverse outcomes. The basis for these host- and resistance-independent associations is unclear, but they should be considered when managing patients with H30 infections.


PLOS ONE | 2017

Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection

Veronika Tchesnokova; Hovhannes Avagyan; Elena Rechkina; Diana Chan; Mariya Muradova; Helen Ghirmai Haile; Matthew Radey; Scott J. Weissman; Kim Riddell; Delia Scholes; James R. Johnson; Evgeni V. Sokurenko

Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strains clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The tests performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients’ urine within 25–35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.


Open Forum Infectious Diseases | 2016

A Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly From Urine Specimens.

Veronika Tchesnokova; Hovhannes Avagyan; Mariya Billig; Sujay Chattopadhyay; Diana Chan; Julietta Pseunova; Elena Rechkina; Kim Riddell; Delia Scholes; Ferric C. Fang; James R. Johnson; Evgeni V. Sokurenko

This prospective study of cellulitis identified β-hemolytic streptococci as the dominating cause in all investigated subgroups. Group C/G streptococci were more frequently detected than group A streptococci. No single clinical feature substantially increased the probability of confirmed streptococcal etiology.


Clinical Infectious Diseases | 2018

Rapid and Extensive Expansion in the United States of a New Multidrug-resistant Escherichia coli Clonal Group, Sequence Type 1193

Veronika Tchesnokova; Elena Rechkina; Lydia Larson; Kendra Ferrier; Jamie Lee Weaver; David W Schroeder; Rosemary C. She; Susan M. Butler-Wu; Maria E. Aguero-Rosenfeld; Danielle M. Zerr; Ferric C. Fang; James D. Ralston; Kim Riddell; Delia Scholes; Scott J. Weissman; Kaveri Parker; Brad Spellberg; James R. Johnson; Evgeni V. Sokurenko

We describe the rapid and ongoing emergence across multiple US cities of a new multidrug-resistant Escherichia coli clone-sequence type (ST) 1193-resistant to fluoroquinolones (100%), trimethoprim-sulfamethoxazole (55%), and tetracycline (53%). ST1193 is associated with younger adults (age <40 years) and currently comprises a quarter of fluoroquinolone-resistant clinical E. coli urine isolates.


Clinical Infectious Diseases | 2018

The Uropathogenic Escherichia coli Subclone Sequence Type 131-H30 Is Responsible for Most Antibiotic Prescription Errors at an Urgent Care Clinic

Veronika Tchesnokova; Kim Riddell; Delia Scholes; James R. Johnson; Evgeni V. Sokurenko

BACKGROUND The pandemic spread of antibiotic resistance increases the likelihood of ineffective empirical therapy. The recently emerged fluoroquinolone-resistant Escherichia coli sequence type (ST) 131-H30R subclone (H30) is a leading cause of multidrug-resistant urinary tract infection (UTI) and bloodstream infection worldwide. METHODS We studied the relative impact of H30 on the likelihood that bacteria isolated from urine of urgent care patients would be resistant to the empirically prescribed antibiotic regimen for UTI. RESULTS Of 750 urinalysis-positive urine samples from urgent care patients with suspected UTI, 306 (41%) yielded E. coli, from 35 different clonal groups (clonotypes). H30 predominated (14% prevalence overall), especially among older patients (age ≥70 years: 26%) and those with diabetes (43%) or urinary catheterization (60%). Resistance to the empirically selected antibiotic regimen occurred in 16% (40/246) of patients overall, 28% (20/71) of older patients, 30% (8/27) of patients with diabetes, 60% (3/5) of catheterized patients, and 71% (22/30) of those with H30. H30s contribution to such mismatched antibiotic selection was 55% overall, 70% among older patients, and 100% among patients with diabetes or a urinary catheter. Among patients with ≥2 of these factors (older age, diabetes, or urinary catheter), 24% of all urinalysis-positive urine samples yielded H30, with a 92% likelihood of resistance to the selected empirical therapy. CONCLUSIONS The multidrug-resistant H30 subclone of E. coli ST131 is responsible for the great majority of mismatched empirical antibiotic prescriptions for suspected UTI at an urgent care clinic among patients ≥70 years old or with diabetes or urinary catheterization.


Open Forum Infectious Diseases | 2016

A Novel 7-SNP-based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly from Urine Specimens

Veronika Tchesnokova; Hovhannes Avagyan; Mariya Billig; Sujay Chattopadhyay; Diana Chan; Julietta Pseunova; Elena Rechkina; Kim Riddell; Delia Scholes; Ferric C. Fang; James R. Johnson; Evgeni V. Sokurenko

This prospective study of cellulitis identified β-hemolytic streptococci as the dominating cause in all investigated subgroups. Group C/G streptococci were more frequently detected than group A streptococci. No single clinical feature substantially increased the probability of confirmed streptococcal etiology.

Collaboration


Dive into the Kim Riddell's collaboration.

Top Co-Authors

Avatar

Delia Scholes

Group Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferric C. Fang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariya Billig

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peggy Rogers

Group Health Cooperative

View shared research outputs
Researchain Logo
Decentralizing Knowledge