Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim Van Roey is active.

Publication


Featured researches published by Kim Van Roey.


Nucleic Acids Research | 2014

The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases

Sandra Orchard; Mais G. Ammari; Bruno Aranda; L Breuza; Leonardo Briganti; Fiona Broackes-Carter; Nancy H. Campbell; Gayatri Chavali; Carol Chen; Noemi del-Toro; Margaret Duesbury; Marine Dumousseau; Eugenia Galeota; Ursula Hinz; Marta Iannuccelli; Sruthi Jagannathan; Rafael C. Jimenez; Jyoti Khadake; Astrid Lagreid; Luana Licata; Ruth C. Lovering; Birgit Meldal; Anna N. Melidoni; Mila Milagros; Daniele Peluso; Livia Perfetto; Pablo Porras; Arathi Raghunath; Sylvie Ricard-Blum; Bernd Roechert

IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org).


Nucleic Acids Research | 2012

ELM—the database of eukaryotic linear motifs

Holger Dinkel; Sushama Michael; Robert J. Weatheritt; Norman E. Davey; Kim Van Roey; Brigitte Altenberg; Grischa Toedt; Bora Uyar; Markus Seiler; Aidan Budd; Lisa Jödicke; Marcel Andre Dammert; Christian Schroeter; Maria Hammer; Tobias Schmidt; Peter Jehl; Caroline McGuigan; Magdalena Dymecka; Claudia Chica; Katja Luck; Allegra Via; Andrew Chatr-aryamontri; Niall J. Haslam; Gleb Grebnev; Richard J. Edwards; Michel O. Steinmetz; Heike Meiselbach; Francesca Diella; Toby J. Gibson

Linear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization. Given their importance, our understanding of motifs is surprisingly limited, largely as a result of the difficulty of discovery, both experimentally and computationally. The Eukaryotic Linear Motif (ELM) resource at http://elm.eu.org provides the biological community with a comprehensive database of known experimentally validated motifs, and an exploratory tool to discover putative linear motifs in user-submitted protein sequences. The current update of the ELM database comprises 1800 annotated motif instances representing 170 distinct functional classes, including approximately 500 novel instances and 24 novel classes. Several older motif class entries have been also revisited, improving annotation and adding novel instances. Furthermore, addition of full-text search capabilities, an enhanced interface and simplified batch download has improved the overall accessibility of the ELM data. The motif discovery portion of the ELM resource has added conservation, and structural attributes have been incorporated to aid users to discriminate biologically relevant motifs from stochastically occurring non-functional instances.


Nucleic Acids Research | 2014

The eukaryotic linear motif resource ELM: 10 years and counting

Holger Dinkel; Kim Van Roey; Sushama Michael; Norman E. Davey; Robert J. Weatheritt; Diana Born; Tobias Speck; Daniel Krüger; Gleb Grebnev; Marta Kubań; Marta Strumillo; Bora Uyar; Aidan Budd; Brigitte Altenberg; Markus Seiler; Lucía B. Chemes; Juliana Glavina; Ignacio E. Sánchez; Francesca Diella; Toby J. Gibson

The eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs). For >10 years, this resource has provided the scientific community with a freely accessible guide to the biology and function of linear motifs. The current version of ELM contains ∼200 different motif classes with over 2400 experimentally validated instances manually curated from >2000 scientific publications. Furthermore, detailed information about motif-mediated interactions has been annotated and made available in standard exchange formats. Where appropriate, links are provided to resources such as switches.elm.eu.org and KEGG pathways.


Nucleic Acids Research | 2016

ELM 2016—data update and new functionality of the eukaryotic linear motif resource

Holger Dinkel; Kim Van Roey; Sushama Michael; Manjeet Kumar; Bora Uyar; Brigitte Altenberg; Vladislava Milchevskaya; Melanie Schneider; Helen Kühn; Annika Behrendt; Sophie Luise Dahl; Victoria Damerell; Sandra Diebel; Sara Kalman; Steffen Klein; Arne C. Knudsen; Christina Mäder; Sabina Merrill; Angelina Staudt; Vera Thiel; Lukas Welti; Norman E. Davey; Francesca Diella; Toby J. Gibson

The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats.


Chemical Reviews | 2014

Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation

Kim Van Roey; Bora Uyar; Robert J. Weatheritt; Holger Dinkel; Markus Seiler; Aidan Budd; Toby J. Gibson; Norman E. Davey

Interaction Modules Directing Cell Regulation Kim Van Roey,† Bora Uyar,† Robert J. Weatheritt,‡ Holger Dinkel,† Markus Seiler,† Aidan Budd,† Toby J. Gibson,† and Norman E. Davey*,†,§ †Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany ‡MRC Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom Department of Physiology, University of California, San Francisco, San Francisco, California 94143, United States


Current Opinion in Structural Biology | 2012

Motif switches: decision-making in cell regulation

Kim Van Roey; Toby J. Gibson; Norman E. Davey

Tight regulation of gene products from transcription to protein degradation is required for reliable and robust control of eukaryotic cell physiology. Many of the mechanisms directing cell regulation rely on proteins detecting the state of the cell through context-dependent, tuneable interactions. These interactions underlie the ability of proteins to make decisions by combining regulatory information encoded in a proteins expression level, localisation and modification state. This raises the question, how do proteins integrate available information to correctly make decisions? Over the past decade pioneering work on the nature and function of intrinsically disordered protein regions has revealed many elegant switching mechanisms that underlie cell signalling and regulation, prompting a reevaluation of their role in cooperative decision-making.


Cell Communication and Signaling | 2015

Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation

Kim Van Roey; Norman E. Davey

A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.


Database | 2013

Capturing cooperative interactions with the PSI-MI format.

Kim Van Roey; Sandra Orchard; Samuel Kerrien; Marine Dumousseau; Sylvie Ricard-Blum; Henning Hermjakob; Toby J. Gibson

The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI–based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology. Database URL: http://psi-mi-cooperativeinteractions.embl.de/


Current protocols in human genetics | 2017

Exploring Short Linear Motifs Using the ELM Database and Tools

Marc Gouw; Hugo Sámano‐Sánchez; Kim Van Roey; Francesca Diella; Toby J. Gibson; Holger Dinkel

The Eukaryotic Linear Motif (ELM) resource is dedicated to the characterization and prediction of short linear motifs (SLiMs). SLiMs are compact, degenerate peptide segments found in many proteins and essential to almost all cellular processes. However, despite their abundance, SLiMs remain largely uncharacterized. The ELM database is a collection of manually annotated SLiM instances curated from experimental literature. In this article we illustrate how to browse and search the database for curated SLiM data, and cover the different types of data integrated in the resource. We also cover how to use this resource in order to predict SLiMs in known as well as novel proteins, and how to interpret the results generated by the ELM prediction pipeline. The ELM database is a very rich resource, and in the following protocols we give helpful examples to demonstrate how this knowledge can be used to improve your own research.


Nucleic Acids Research | 2018

The eukaryotic linear motif resource - 2018 update.

Marc Gouw; Sushama Michael; Hugo Sámano‐Sánchez; Manjeet Kumar; András Zeke; Benjamin Lang; Benoit Bely; Lucía B. Chemes; Norman E. Davey; Ziqi Deng; Francesca Diella; Clara-Marie Gürth; Ann-Kathrin Huber; Stefan Kleinsorg; Lara S. Schlegel; Nicolas Palopoli; Kim Van Roey; Brigitte Altenberg; Attila Reményi; Holger Dinkel; Toby J. Gibson

Abstract Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.

Collaboration


Dive into the Kim Van Roey's collaboration.

Top Co-Authors

Avatar

Toby J. Gibson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Holger Dinkel

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Norman E. Davey

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Francesca Diella

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Bora Uyar

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Aidan Budd

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Robert J. Weatheritt

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Seiler

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hugo Sámano‐Sánchez

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge