Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim Verbeken is active.

Publication


Featured researches published by Kim Verbeken.


Microbial Biotechnology | 2008

High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell.

Nico Boon; Peter Aelterman; Peter Clauwaert; Liesje De Schamphelaire; Patrick Van Oostveldt; Kim Verbeken; Korneel Rabaey; Willy Verstraete

In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s−1 resulted in the production of a current and power output two to three times higher than those in the case of low shear rates (around 0.3 s−1). Biomass and biofilm analyses showed that the anodic biofilm from the MFC enriched under high shear rate conditions, in comparison with that under low shear rate conditions, had a doubled average thickness and the biomass density increased with a factor 5. The microbial community of the former, as analysed by DGGE, was significantly different from that of the latter. The results showed that enrichment by applying high shear rates in an MFC can result in a specific electrochemically active biofilm that is thicker and denser and attaches better, and hence has a better performance.


Water Research | 2014

Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion.

Jo De Vrieze; Sylvia Gildemyn; Jan Arends; Inka Vanwonterghem; Kim Verbeken; Nico Boon; Willy Verstraete; Gene W. Tyson; Tom Hennebel; Korneel Rabaey

Anaerobic digestion (AD) is a well-established technology for energy recovery from organic waste streams. Several studies noted that inserting a bioelectrochemical system (BES) inside an anaerobic digester can increase biogas output, however the mechanism behind this was not explored and primary controls were not executed. Here, we evaluated whether a BES could stabilize AD of molasses. Lab-scale digesters were operated in the presence or absence of electrodes, in open (no applied potential) and closed circuit conditions. In the control reactors without electrodes methane production decreased to 50% of the initial rate, while it remained stable in the reactors with electrodes, indicating a stabilizing effect. After 91 days of operation, the now colonized electrodes were introduced in the failing AD reactors to evaluate their remediating capacity. This resulted in an immediate increase in CH4 production and VFA removal. Although a current was generated in the BES operated in closed circuit, no direct effect of applied potential nor current was observed. A high abundance of Methanosaeta was detected on the electrodes, however irrespective of the applied cell potential. This study demonstrated that, in addition to other studies reporting only an increase in methane production, a BES can also remediate AD systems that exhibited process failure. However, the lack of difference between current driven and open circuit systems indicates that the key impact is through biomass retention, rather than electrochemical interaction with the electrodes.


Environmental Science & Technology | 2010

Diclofenac Oxidation by Biogenic Manganese Oxides

Ilse Forrez; Marta Carballa; Kim Verbeken; Lynn Vanhaecke; Michael P. Schlüsener; Thomas A. Ternes; Nico Boon; Willy Verstraete

Diclofenac, a nonsteroidal anti-inflammatory drug, is one of the most commonly detected pharmaceuticals in sewage treatment plant (STP) effluents. In this work, biologically produced manganese oxides (BioMnOx) were investigated to remove diclofenac. At neutral pH, the diclofenac oxidation with BioMnOx was 10-fold faster than with chemically produced MnO(2). The main advantage of BioMnOx over chemical MnO(2) is the ability of the bacteria to reoxidize the formed Mn(2+), which inhibits the oxidation of diclofenac. Diclofenac-2,5-iminoquinone was identified as a major transformation product, accounting for 5-10% of the transformed diclofenac. Except for 5-hydroxydiclofenac, which was identified as an intermediate, no other oxidation products were detected. Diclofenac oxidation was proportional to the amount of BioMnOx dosed, and the pseudo first order rate constant k was 6-fold higher when pH was decreased from 6.8 to 6.2. The Mn(2+) levels remained below the drinking water limit (0.05 mg L(-1)), thus indicating the efficient in situ microbiological regeneration of the oxidant. These results combined with previous studies suggest the potential of BioMnOx for STP effluent polishing.


Water Research | 2011

Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes

Bart De Gusseme; Tom Hennebel; Eline Christiaens; Hans Saveyn; Kim Verbeken; Jeffrey P. Fitts; Nico Boon; Willy Verstraete

The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag(0)) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag(0) particles, preventing aggregation during encapsulation. In this study, bio-Ag(0) was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag(0) and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag(+) from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag(0)(powder) m(-2) in a submerged plate membrane reactor operated at a flux of 3.1 L m(-2) h(-1). Upon startup, the silver concentration in the effluent initially increased to 271 μg L(-1) but after filtration of 31 L m(-2), the concentration approached the drinking water limit ( = 100 μg L(-1)). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m(-2) h(-1), showing the potential of this membrane technology for water disinfection on small scale.


IEEE Transactions on Magnetics | 2010

Dimensional Effects on Magnetic Properties of Fe–Si Steels Due to Laser and Mechanical Cutting

Edgar Gomes de Araujo; Jürgen Schneider; Kim Verbeken; Giuseppe Pasquarella; Yvan Houbaert

Microstructural deterioration near the cut line and presence of residual stresses both affect the magnetic properties of cut parts. In this paper, the differences between microstructural deterioration resulting from mechanical and laser cutting as well as the sample size effects observed upon hysteresis will be discussed. It will be shown that the underlying mechanism for changes in magnetic properties due to mechanical cutting is distinct from that of laser cutting.


Water Research | 2013

Trace organic solutes in closed-loop forward osmosis applications: Influence of membrane fouling and modeling of solute build-up

Arnout D'Haese; Pierre Le-Clech; Sam Van Nevel; Kim Verbeken; Emile Cornelissen; Stuart J. Khan; Arne Verliefde

In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution.


International Materials Reviews | 2012

Modern HSLA steels and role of non-recrystallisation temperature

Stephanie Vervynckt; Kim Verbeken; B Lopez; J.J. Jonas

Abstract The use of heavy gauge steel sheets for structural applications often requires a combination of high yield strength and adequate toughness. The most cost effective way to achieve high yield strength and high ductility in low alloyed steels is through grain refinement. In industrial practice, such refinement is commonly obtained by thermomechanical controlled processing (TMCP). This approach comprises slab reheating to well defined temperatures, a large amount of hot deformation below the non-recrystallisation temperature Tnr and accelerated cooling. In practice, the Tnr is generally raised by the addition of microalloying elements such as Nb and Ti. As these elements contribute substantially to the alloying costs, optimisation of their use allows for a decrease in production cost. Better understanding of the Tnr assists in tuning the rolling process so that optimum mechanical properties can be produced. One area of importance is to recognise that the concept of the Tnr was originally developed for reversing mills and the production of plate steels. Methods of defining and determining it must be modified if it is to be applied to strip mills and their associated short interpass times. The main goal of this review is to provide a concise and complete overview of the current understanding of the fundamental mechanisms that control the Tnr and to address the different methods that can be used to determine it.


Water Research | 2010

Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles.

Tom Hennebel; Simon De Corte; Lynn Vanhaecke; Katrien Vanherck; Ilse Forrez; Bart De Gusseme; Pieter Verhagen; Kim Verbeken; Bart Van der Bruggen; Ivo Vankelecom; Nico Boon; Willy Verstraete

There is an increasing concern about the fate of iodinated contrast media (ICM) in the environment. Limited removal efficiencies of currently applied techniques such as advanced oxidation processes require more performant strategies. The aim of this study was to establish an innovative degradation process for diatrizoate, a highly recalcitrant ICM, by using biogenic Pd nanoparticles as free suspension or immobilized in polyvinylidene fluoride (PVDF) and polysulfone (PSf) membranes. As measured by HPLC-UV, the removal of 20mg L(-1) diatrizoate by a 10mg L(-1) Pd suspension was completed after 4h at a pH of 10. LC-MS analysis provided evidence for the sequential hydrodeiodination of diatrizoate. Pd did not lose its activity after incorporation in the PVDF and PSf matrix and the highest activity (k(cat)=30.0+/-0.4h(-1) L g(-1) Pd) was obtained with a casting solution of 10% PSf and 500mg L(-1) Pd. Subsequently, water containing 20mg L(-1) diatrizoate was treated in a membrane contactor, in which the water was supplied at one side of the membrane while hydrogen was provided at the other side. In a fed batch configuration, a removal efficiency of 77% after a time period of 48h was obtained. This work showed that membrane contactors with encapsulated biogenic nanoparticles can be instrumental for treatment of water contaminated with diatrizoate.


Metals and Materials International | 2013

Thermal desorption spectroscopy study of the interaction of hydrogen with TiC precipitates

D. Pérez Escobar; Elien Wallaert; L. Duprez; Andrej Atrens; Kim Verbeken

Thermal desorption spectroscopy (TDS) was used to study hydrogen-trap interactions for an experimental steel (0.025 wt%C-0.09%Ti). After lab processing, the microstructure consisted of small (∼20 μm) ferrite grains containing nanometer TiC precipitates. After hot and cold rolling, the material contained some hydrogen (originated from the hot rolling) in irreversible traps, the TiC precipitates. After annealing in hydrogen, the TDS spectra consisted of a high temperature peak, attributed to irreversible trapping by TiC precipitates. Annealing slightly increased the TiC precipitate size. Both the peak temperature and peak area increased with increasing annealing temperature. The increase in peak area occurred together with the increase in TiC precipitate size. The TDS spectra for samples annealed at 800 °C, and electrochemically charged, contained (i) a low temperature peak which decreased in height with increasing desorption time, and (ii) a high temperature peak that did not change significantly with desorption time, and was similar to those after gaseous charging. The low temperature peak was attributed to reversible traps such as grain boundaries, whereas the high temperature peak was attributed to irreversible trapping by TiC precipitates. The high temperature TDS peak was composed of constituent peaks with essentially the same activation energy of 145 kJ/mol.


Applied and Environmental Microbiology | 2011

Influence of Pore Structure on the Effectiveness of a Biogenic Carbonate Surface Treatment for Limestone Conservation

Willem De Muynck; Stijn Leuridan; Denis Van Loo; Kim Verbeken; Veerle Cnudde; Nele De Belie; Willy Verstraete

ABSTRACT A ureolytic biodeposition treatment was applied to five types of limestone in order to investigate the effect of pore structure on the protective performance of a biogenic carbonate surface treatment. Protective performance was assessed by means of transport and degradation processes, and the penetration depth of the treatment was visualized by microtomography. Pore size governs bacterial adsorption and hence the location and amount of carbonate precipitated. This study indicated that in macroporous stone, biogenic carbonate formation occurred to a larger extent and at greater depths than in microporous stone. As a consequence, the biodeposition treatment exhibited the greatest protective performance on macroporous stone. While precipitation was limited to the outer surface of microporous stone, biogenic carbonate formation occurred at depths of greater than 2 mm for Savonnières and Euville. For Savonnières, the presence of biogenic carbonate resulted in a 20-fold decreased rate of water absorption, which resulted in increased resistance to sodium sulfate attack and to freezing and thawing. While untreated samples were completely degraded after 15 cycles of salt attack, no damage was observed in biodeposition-treated Savonnières. From this study, it is clear that biodeposition is very effective and more feasible for macroporous stones than for microporous stones.

Collaboration


Dive into the Kim Verbeken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Terryn

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Nele Moelans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

I. De Graeve

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge