Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimber L. Stanhope is active.

Publication


Featured researches published by Kimber L. Stanhope.


Journal of Clinical Investigation | 2009

Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

Kimber L. Stanhope; Jean-Marc Schwarz; Nancy L. Keim; Steven C. Griffen; Andrew A. Bremer; James L. Graham; Bonnie Hatcher; Chad L. Cox; Artem Dyachenko; Wei Zhang; John P. McGahan; Anthony Seibert; Ronald M. Krauss; Sally Chiu; Ernst J. Schaefer; Masumi Ai; Seiko Otokozawa; Katsuyuki Nakajima; Carine Beysen; Marc K. Hellerstein; Lars Berglund; Peter J. Havel

Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases.

Christine Beeton; Heike Wulff; Nathan E. Standifer; Philippe Azam; Katherine M. Mullen; Michael W. Pennington; Aaron Kolski-Andreaco; Eric Wei; Alexandra Grino; Debra Counts; Ping H. Wang; Christine J. LeeHealey; Brian S. Andrews; Ananthakrishnan Sankaranarayanan; Daniel Homerick; Werner W. Roeck; Jamshid Tehranzadeh; Kimber L. Stanhope; Pavel I. Zimin; Peter J. Havel; Stephen M. Griffey; Hans Guenther Knaus; Gerald T. Nepom; George A. Gutman; Peter A. Calabresi; K. George Chandy

Autoreactive memory T lymphocytes are implicated in the pathogenesis of autoimmune diseases. Here we demonstrate that disease-associated autoreactive T cells from patients with type-1 diabetes mellitus or rheumatoid arthritis (RA) are mainly CD4+CCR7−CD45RA− effector memory T cells (TEM cells) with elevated Kv1.3 potassium channel expression. In contrast, T cells with other antigen specificities from these patients, or autoreactive T cells from healthy individuals and disease controls, express low levels of Kv1.3 and are predominantly naïve or central-memory (TCM) cells. In TEM cells, Kv1.3 traffics to the immunological synapse during antigen presentation where it colocalizes with Kvβ2, SAP97, ZIP, p56lck, and CD4. Although Kv1.3 inhibitors [ShK(L5)-amide (SL5) and PAP1] do not prevent immunological synapse formation, they suppress Ca2+-signaling, cytokine production, and proliferation of autoantigen-specific TEM cells at pharmacologically relevant concentrations while sparing other classes of T cells. Kv1.3 inhibitors ameliorate pristane-induced arthritis in rats and reduce the incidence of experimental autoimmune diabetes in diabetes-prone (DP-BB/W) rats. Repeated dosing with Kv1.3 inhibitors in rats has not revealed systemic toxicity. Further development of Kv1.3 blockers for autoimmune disease therapy is warranted.


The Journal of Clinical Endocrinology and Metabolism | 2009

Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.

Karen L. Teff; Joanne Grudziak; Raymond R. Townsend; Tamara N. Dunn; Ryan W. Grant; Sean H. Adams; Nancy L. Keim; Bethany P. Cummings; Kimber L. Stanhope; Peter J. Havel

CONTEXT Compared with glucose-sweetened beverages, consumption of fructose-sweetened beverages with meals elevates postprandial plasma triglycerides and lowers 24-h insulin and leptin profiles in normal-weight women. The effects of fructose, compared with glucose, ingestion on metabolic profiles in obese subjects has not been studied. OBJECTIVE The objective of the study was to compare the effects of fructose- and glucose-sweetened beverages consumed with meals on hormones and metabolic substrates in obese subjects. DESIGN AND SETTING The study had a within-subject design conducted in the clinical and translational research center. PARTICIPANTS Participants included 17 obese men (n = 9) and women (n = 8), with a body mass index greater than 30 kg/m(2). INTERVENTIONS Subjects were studied under two conditions involving ingestion of mixed nutrient meals with either glucose-sweetened beverages or fructose-sweetened beverages. The beverages provided 30% of total kilocalories. Blood samples were collected over 24 h. MAIN OUTCOME MEASURES Area under the curve (24 h AUC) for glucose, lactate, insulin, leptin, ghrelin, uric acid, triglycerides (TGs), and free fatty acids was measured. RESULTS Compared with glucose-sweetened beverages, fructose consumption was associated with lower AUCs for insulin (1052.6 +/- 135.1 vs. 549.2 +/- 79.7 muU/ml per 23 h, P < 0.001) and leptin (151.9 +/- 22.7 vs. 107.0 +/- 15.0 ng/ml per 24 h, P < 0.03) and increased AUC for TG (242.3 +/- 96.8 vs. 704.3 +/- 124.4 mg/dl per 24 h, P < 0.0001). Insulin-resistant subjects exhibited larger 24-h TG profiles (P < 0.03). CONCLUSIONS In obese subjects, consumption of fructose-sweetened beverages with meals was associated with less insulin secretion, blunted diurnal leptin profiles, and increased postprandial TG concentrations compared with glucose consumption. Increases of TGs were augmented in obese subjects with insulin resistance, suggesting that fructose consumption may exacerbate an already adverse metabolic profile present in many obese subjects.


The Journal of Clinical Endocrinology and Metabolism | 2011

Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women

Kimber L. Stanhope; Andrew A. Bremer; Valentina Medici; Katsuyuki Nakajima; Yasuki Ito; Guoxia Chen; Tak Hou Fong; Vivien Lee; Roseanne I. Menorca; Nancy L. Keim; Peter J. Havel

CONTEXT The American Heart Association Nutrition Committee recommends women and men consume no more than 100 and 150 kcal of added sugar per day, respectively, whereas the Dietary Guidelines for Americans, 2010, suggests a maximal added sugar intake of 25% or less of total energy. OBJECTIVE To address this discrepancy, we compared the effects of consuming glucose, fructose, or high-fructose corn syrup (HFCS) at 25% of energy requirements (E) on risk factors for cardiovascular disease. PARTICIPANTS, DESIGN AND SETTING, AND INTERVENTION: Forty-eight adults (aged 18-40 yr; body mass index 18-35 kg/m(2)) resided at the Clinical Research Center for 3.5 d of baseline testing while consuming energy-balanced diets containing 55% E complex carbohydrate. For 12 outpatient days, they consumed usual ad libitum diets along with three servings per day of glucose, fructose, or HFCS-sweetened beverages (n = 16/group), which provided 25% E requirements. Subjects then consumed energy-balanced diets containing 25% E sugar-sweetened beverages/30% E complex carbohydrate during 3.5 d of inpatient intervention testing. MAIN OUTCOME MEASURES Twenty-four-hour triglyceride area under the curve, fasting plasma low-density lipoprotein (LDL), and apolipoprotein B (apoB) concentrations were measured. RESULTS Twenty-four-hour triglyceride area under the curve was increased compared with baseline during consumption of fructose (+4.7 ± 1.2 mmol/liter × 24 h, P = 0.0032) and HFCS (+1.8 ± 1.4 mmol/liter × 24 h, P = 0.035) but not glucose (-1.9 ± 0.9 mmol/liter × 24 h, P = 0.14). Fasting LDL and apoB concentrations were increased during consumption of fructose (LDL: +0.29 ± 0.082 mmol/liter, P = 0.0023; apoB: +0.093 ± 0.022 g/liter, P = 0.0005) and HFCS (LDL: +0.42 ± 0.11 mmol/liter, P < 0.0001; apoB: +0.12 ± 0.031 g/liter, P < 0.0001) but not glucose (LDL: +0.012 ± 0.071 mmol/liter, P = 0.86; apoB: +0.0097 ± 0.019 g/liter, P = 0.90). CONCLUSIONS Consumption of HFCS-sweetened beverages for 2 wk at 25% E increased risk factors for cardiovascular disease comparably with fructose and more than glucose in young adults.


Current Opinion in Lipidology | 2008

Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance

Kimber L. Stanhope; Peter J. Havel

Purpose of review Based on interim results from an ongoing study, we have reported that consumption of a high-fructose diet, but not a high-glucose diet, promotes the development of three of the pathological characteristics associated with metabolic syndrome: visceral adiposity, dyslipidemia, and insulin resistance. From these results and a review of the current literature, we present two potential sequences of events by which fructose consumption may contribute to metabolic syndrome. Recent findings The earliest metabolic perturbation resulting from fructose consumption is postprandial hypertriglyceridemia, which may increase visceral adipose deposition. Visceral adiposity contributes to hepatic triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver. With insulin resistance, VLDL production is upregulated and this, along with systemic free fatty acids, increase lipid delivery to muscle. It is also possible that fructose initiates hepatic insulin resistance independently of visceral adiposity and free fatty acid delivery. By providing substrate for hepatic lipogenesis, fructose may result in a direct lipid overload that leads to triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance. Summary Our investigation and future studies of the effects of fructose consumption may help to clarify the sequence of events leading to development of metabolic syndrome.


The American Journal of Clinical Nutrition | 2008

Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup

Kimber L. Stanhope; Peter J. Havel

Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.


PLOS Biology | 2005

Effects of hypothalamic neurodegeneration on energy balance

Allison W. Xu; Christopher B. Kaelin; Gregory J. Morton; Kayoko Ogimoto; Kimber L. Stanhope; James L. Graham; Denis G. Baskin; Peter J. Havel; Michael W. Schwartz; Gregory S. Barsh

Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp) or proopiomelanocortin (Pomc), neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats : reversal by insulin

Peter J. Havel; Janet Y. Uriu-Hare; Tina Liu; Kimber L. Stanhope; Judith S. Stern; Carl L. Keen; Bo Ahrén

Evidence for regulation of circulating leptin by insulin is conflicting. Diabetes was induced in rats with streptozotocin (STZ; 40 mg ⋅ kg-1 ⋅ day-1× 2 days) to examine the effect of insulin-deficient diabetes and insulin treatment on circulating leptin. After 12 wk, plasma leptin concentrations in untreated rats were all <0.4 ng/ml versus 4.9 ± 0.9 ng/ml in control animals ( P < 0.005). In rats treated with subcutaneous insulin implants for 12 wk, which reduced hyperglycemia by ∼50%, plasma leptin was 2.1 ± 0.6 ng/ml, whereas leptin concentrations were 6.0 ± 1.6 ng/ml in insulin-implanted rats receiving supplemental injections of insulin for 4 days to normalize plasma glucose ( P< 0.005 vs. STZ untreated). In a second experiment, plasma leptin was monitored at biweekly intervals during 12 wk of diabetes. In rats treated with insulin implants, plasma leptin concentrations were inversely proportional to glycemia ( r= -0.64; P < 0.0001) and unrelated to body weight ( P = 0.40). In a third experiment, plasma leptin concentrations were examined very early after the induction of diabetes. Within 24 h after STZ injection, plasma insulin decreased from 480 ± 30 to 130 ± 10 pM ( P < 0.0001), plasma glucose increased from 7.0 ± 0.2 to 24.8 ± 0.5 mM, and plasma leptin decreased from 3.2 ± 0.2 to 1.2 ± 0.1 ng/ml (Δ = -63 ± 3%, P < 0.0001). In a subset of diabetic rats treated with insulin for 2 days, glucose decreased to 11.7 ± 3.9 mM and leptin increased from 0.5 ± 0.1 to 2.9 ± 0.6 ng/ml ( P< 0.01) without an effect on epididymal fat weight. The change of leptin was correlated with the degree of glucose lowering ( r = 0.75, P < 0.05). Thus insulin-deficient diabetes produces rapid and sustained decreases of leptin that are not solely dependent on weight loss, whereas insulin treatment reverses the hypoleptinemia. We hypothesize that decreased glucose transport into adipose tissue may contribute to decreased leptin production in insulin-deficient diabetes.Evidence for regulation of circulating leptin by insulin is conflicting. Diabetes was induced in rats with streptozotocin (STZ; 40 mg.kg(-1).day(-1) x 2 days) to examine the effect of insulin-deficient diabetes and insulin treatment on circulating leptin. After 12 wk, plasma leptin concentrations in untreated rats were all < 0.4 ng/ml versus 4.9 +/- 0.9 ng/ml in control animals (P < 0.005). In rats treated with subcutaneous insulin implants for 12 wk, which reduced hyperglycemia by approximately 50%, plasma leptin was 2.1 +/- 0.6 ng/ml, whereas leptin concentrations were 6.0 +/- 1.6 ng/ml in insulin-implanted rats receiving supplemental injections of insulin for 4 days to normalize plasma glucose (P < 0.005 vs. STZ untreated). In a second experiment, plasma leptin was monitored at biweekly intervals during 12 wk of diabetes. In rats treated with insulin implants, plasma leptin concentrations were inversely proportional to glycemia (r = -0.64; P < 0.0001) and unrelated to body weight (P = 0.40). In a third experiment, plasma leptin concentrations were examined very early after the induction of diabetes. Within 24 h after STZ injection, plasma insulin decreased from 480 +/- 30 to 130 +/- 10 pM (P < 0.0001), plasma glucose increased from 7.0 +/- 0.2 to 24.8 +/- 0.5 mM, and plasma leptin decreased from 3.2 +/- 0.2 to 1.2 +/- 0.1 ng/ml (delta = -63 +/- 3%, P < 0.0001). In a subset of diabetic rats treated with insulin for 2 days, glucose decreased to 11.7 +/- 3.9 mM and leptin increased from 0.5 +/- 0.1 to 2.9 +/- 0.6 ng/ml (P < 0.01) without an effect on epididymal fat weight. The change of leptin was correlated with the degree of glucose lowering (r = 0.75, P < 0.05). Thus insulin-deficient diabetes produces rapid and sustained decreases of leptin that are not solely dependent on weight loss, whereas insulin treatment reverses the hypoleptinemia. We hypothesize that decreased glucose transport into adipose tissue may contribute to decreased leptin production in insulin-deficient diabetes.


Annual Review of Medicine | 2012

Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome.

Kimber L. Stanhope

There is controversy concerning the role of sugar in the epidemics of obesity and metabolic syndrome. There is less controversy concerning the effects of fructose on components of metabolic syndrome; consumption of fructose has been shown to increase visceral adipose deposition and de novo lipogenesis (DNL), produce dyslipidemia, and decrease insulin sensitivity in older, overweight/obese subjects. This review examines the potential mechanisms of these effects of fructose and considers whether these mechanisms are relevant to the effects of consuming sucrose or high-fructose corn syrup. Evidence demonstrating that the commonly consumed sugars increase visceral adipose deposition, DNL, and insulin insensitivity is limited or inconclusive. Evidence that sugar consumption promotes development of an unfavorable lipid profile is strong and suggests that the upper added sugar consumption limit of 25% of energy or less, suggested in the Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans 2010, may merit re-evaluation.


Current Opinion in Lipidology | 2013

Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies.

Kimber L. Stanhope; Jean-Marc Schwarz; Peter J. Havel

Purpose of review The effects of dietary sugar on risk factors and the processes associated with metabolic disease remain a controversial topic, with recent reviews of the available evidence arriving at widely discrepant conclusions. Recent findings There are many recently published epidemiological studies that provide evidence that sugar consumption is associated with metabolic disease. Three recent clinical studies, which investigated the effects of consuming relevant doses of sucrose or high-fructose corn syrup along with ad libitum diets, provide evidence that consumption of these sugars increase the risk factors for cardiovascular disease and metabolic syndrome. Mechanistic studies suggest that these effects result from the rapid hepatic metabolism of fructose catalyzed by fructokinase C, which generates substrate for de novo lipogenesis and leads to increased uric acid levels. Recent clinical studies investigating the effects of consuming less sugar, via educational interventions or by substitution of sugar-sweetened beverages for noncalorically sweetened beverages, provide evidence that such strategies have beneficial effects on risk factors for metabolic disease or on BMI in children. Summary The accumulating epidemiological evidence, direct clinical evidence, and the evidence suggesting plausible mechanisms support a role for sugar in the epidemics of metabolic syndrome, cardiovascular disease, and type 2 diabetes.

Collaboration


Dive into the Kimber L. Stanhope's collaboration.

Top Co-Authors

Avatar

Peter J. Havel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy L. Keim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert B. Boyer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane M. O'Brien

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Hemant K. Tiwari

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge