Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberle M. Jacobs is active.

Publication


Featured researches published by Kimberle M. Jacobs.


Journal of Computational Neuroscience | 2011

Synaptic information transfer in computer models of neocortical columns

Samuel A. Neymotin; Kimberle M. Jacobs; André A. Fenton; William W. Lytton

Understanding the direction and quantity of information flowing in neuronal networks is a fundamental problem in neuroscience. Brains and neuronal networks must at the same time store information about the world and react to information in the world. We sought to measure how the activity of the network alters information flow from inputs to output patterns. Using neocortical column neuronal network simulations, we demonstrated that networks with greater internal connectivity reduced input/output correlations from excitatory synapses and decreased negative correlations from inhibitory synapses, measured by Kendall’s τ correlation. Both of these changes were associated with reduction in information flow, measured by normalized transfer entropy (nTE). Information handling by the network reflected the degree of internal connectivity. With no internal connectivity, the feedforward network transformed inputs through nonlinear summation and thresholding. With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. This dynamic contribution amounts to added information drawn from that stored in the network. At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing.


The Journal of Neuroscience | 2012

Electrophysiological Abnormalities in Both Axotomized and Nonaxotomized Pyramidal Neurons following Mild Traumatic Brain Injury

John E. Greer; John T. Povlishock; Kimberle M. Jacobs

Mild traumatic brain injury (mTBI) often produces lasting detrimental effects on cognitive processes. The mechanisms underlying neurological abnormalities have not been fully identified, in part due to the diffuse pathology underlying mTBI. Here we employ a mouse model of mTBI that allows for identification of both axotomized and intact neurons in the living cortical slice via neuronal expression of yellow fluorescent protein. Both axotomized and intact neurons recorded within injured cortex are healthy with a normal resting membrane potential, time constant (τ), and input resistance (Rin). In control cortex, 25% of cells show an intrinsically bursting action potential (AP) firing pattern, and the rest respond to injected depolarizing current with a regular-spiking pattern. At 2 d postinjury, intrinsic bursting activity is lost within the intact population. The AP amplitude is increased and afterhyperpolarization duration decreased in axotomized neurons at 1 and 2 d postinjury. In contrast, intact neurons also show these changes at 1 d, but recover by 2 d postinjury. Two measures suggest an initial decrease in excitability in axotomized neurons followed by an increase in excitability within intact neurons. The rheobase is significantly increased in axotomized neurons at 1 d postinjury. The slope of the plot of AP frequency versus injected current is larger for intact neurons at 2 d postinjury. Together, these results demonstrate that intact and axotomized neurons are both affected by mTBI, resulting in different changes in neuronal excitability that may contribute to network dysfunction following TBI.


International Journal of Neural Systems | 2014

Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex.

Beata Strack; Kimberle M. Jacobs; Krzysztof J. Cios

The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.


Brain Research | 2011

Altered intrinsic properties of neuronal subtypes in malformed epileptogenic cortex.

Amanda L. George; Kimberle M. Jacobs

Neuronal intrinsic properties control action potential firing rates and serve to define particular neuronal subtypes. Changes in intrinsic properties have previously been shown to contribute to hyperexcitability in a number of epilepsy models. Here we examined whether a developmental insult producing the cortical malformation of microgyria altered the identity or firing properties of layer V pyramidal neurons and two interneuron subtypes. Trains of action potentials were elicited with a series of current injection steps during whole cell patch clamp recordings. Cells in malformed cortex identified as having an apical dendrite had firing patterns similar to control pyramidal neurons. The duration of the second action potential in the train was increased in paramicrogyral (PMG) pyramidal cells, suggesting that these cells may be in an immature state, as was previously found for layer II/III pyramidal neurons. Based on stereotypical firing patterns and other intrinsic properties, fast-spiking (FS) and low threshold-spiking (LTS) interneuron subpopulations were clearly identified in both control and malformed cortex. Most intrinsic properties measured in malformed cortex were unchanged, suggesting that subtype identity is maintained. However, LTS interneurons in lesioned cortex had increased maximum firing frequency, decreased initial afterhyperpolarization duration, and increased total adaptation ratio compared to control LTS cells. FS interneurons demonstrated decreased maximum firing frequencies in malformed cortex compared to control FS cells. These changes may increase the efficacy of LTS while decreasing the effectiveness of FS interneurons. These data indicate that differential alterations of individual neuronal subpopulations may endow them with specific characteristics that promote epileptogenesis.


Journal of Neurotrauma | 2015

Increased Network Excitability Due to Altered Synaptic Inputs to Neocortical Layer V Intact and Axotomized Pyramidal Neurons after Mild Traumatic Brain Injury.

Anders Hånell; John E. Greer; Kimberle M. Jacobs

Mild traumatic brain injury (mTBI) can produce long lasting cognitive dysfunction. There is typically no cell death and only diffuse structural injury after mTBI. Thus, functional changes in intact neurons may contribute to symptoms. We have previously shown altered intrinsic properties of axotomized and intact neurons within 2 d after a central fluid percussion injury in mice expressing yellow fluorescent protein (YFP) that allow identification of axonal state prior to recording. Here, whole-cell patch clamp recordings were used to examine synaptic properties of YFP(+) layer V pyramidal neurons. An increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was recorded from axotomized neurons at 1 d and intact neurons at 2 d after injury, likely reflecting an increased number of afferents. This also was reflected in the increased amplitude of the EPSC evoked by local extracellular stimulation for all neurons from injured cortex and increased likelihood of producing an action potential for intact cells. Field potentials recorded in superficial layers after online deep layer stimulation contained a single negative peak in controls but multiple negative peaks in injured tissue. The amplitude of this evoked negativity was significantly larger than controls over a series of stimulus intensities at both the 1 d and 2 d survival times. Interictal-like spikes never occurred in the field potential recordings from controls but were observed in 20-80% of stimulus presentations in injured cortex. Together, these results suggest an overall increase in network excitability and the production of particularly powerful (intact) neurons that have both increased intrinsic and synaptic excitability.


Frontiers in Cellular Neuroscience | 2017

Mild Traumatic Brain Injury Evokes Pyramidal Neuron Axon Initial Segment Plasticity and Diffuse Presynaptic Inhibitory Terminal Loss

Michal Vascak; Jianli Sun; Matthew L. Baer; Kimberle M. Jacobs; John T. Povlishock

The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.


Journal of Neuroinflammation | 2017

Inflammatory demyelination alters subcortical visual circuits

Sheila Espírito Santo Araújo; Henrique Rocha Mendonça; Natalie A. Wheeler; Paula Campello-Costa; Kimberle M. Jacobs; Flávia Carvalho Alcantara Gomes; Michael A. Fox; Babette Fuss

BackgroundMultiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail.MethodsAdult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings.ResultsIn the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition.ConclusionsUsing the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.


Epilepsy Research | 2014

Early susceptibility for epileptiform activity in malformed cortex

Andrew Bell; Kimberle M. Jacobs

Despite early disruption of developmental processes, hyperexcitability is often delayed after the induction of cortical malformations. In the freeze-lesion model of microgyria, interictal activity cannot be evoked in vitro until postnatal day (P)12, despite the increased excitatory afferent input to the epileptogenic region by P10. In order to determine the most critical time period for assessment of epileptogenic mechanisms, here we have used low-Mg(2+) aCSF as a second hit after the neonatal freeze lesion to examine whether there is an increased susceptibility prior to the overt expression of epileptiform activity. This two-hit model produced increased interictal activity in freeze-lesioned relative to control cortex. We quantified this with measures of incidence by sweep, time to first epileptiform event, and magnitude of late activity. The increase was present even in the P7-9 survival group, before increased excitatory afferents invade, as well as in the P10-11 and P12-15 groups. In our young adult group (P28-36), the amount of interictal activity did not differ, but only the lesioned cortices produced ictal activity. We conclude that epileptogenic processes begin early and continue beyond the expression of interictal activity, with different time courses for susceptibility for interictal and ictal activity.


Frontiers in Systems Neuroscience | 2016

Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury.

Jianli Sun; Kimberle M. Jacobs

Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the CypDKO likely has a direct effect on membrane properties, rather than producing a selective reduction of the effects of mTBI. These results suggest that inhibiting CypD after TBI is an effective strategy to reduce synaptic hyperexcitation, making it a continued target for potential treatment of network abnormalities.


international ieee/embs conference on neural engineering | 2013

Biological restraint on the Izhikevich neuron model essential for seizure modeling

Beata Strack; Kimberle M. Jacobs; Krzysztof J. Cios

Izhikevich model of a neuron allows for simulation of spiking pattern that mimics known biological subtypes. When a current within a range typical for biological experiments is injected into the cell the firing pattern produced in the simulation is close to that observed biologically. However, once these neurons are embedded into a network, the level of depolarization is controlled only by the synaptic depolarization received by the simulated connections. Under these conditions there is no limit on the maximum firing rate produced by any of the neurons. Here we introduce a modification of the Izhikevich model to restrict the firing rate. We demonstrate how this modification affects the overall network activity using a simple artificial neural network. The proposed restraint on the Izhikevich model is particularly important for larger scale simulations or when the frequency dependent short-term plasticity is used in the network. Although maximum firing rates are most likely exceeded in simulations of seizure-like activity we show that restriction of neuronal firing frequencies impacts even small networks with moderate levels of activity.

Collaboration


Dive into the Kimberle M. Jacobs's collaboration.

Top Co-Authors

Avatar

Beata Strack

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Povlishock

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Krzysztof J. Cios

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jianli Sun

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Amanda L. George

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Andrew Bell

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge