Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly A. Fernandes is active.

Publication


Featured researches published by Kimberly A. Fernandes.


Neurobiology of Disease | 2012

JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death.

Kimberly A. Fernandes; Jeffrey M. Harder; Laura B Fornarola; Robert S. Freeman; Abbot F. Clark; Iok-Hou Pang; Simon W. M. John; Richard T. Libby

Glaucoma is a neurodegenerative disease characterized by the apoptotic death of retinal ganglion cells (RGCs). The primary insult to RGCs in glaucoma is thought to occur to their axons as they exit the eye in the optic nerve head. However, pathological signaling pathways that exert central roles in triggering RGC death following axonal injury remain unidentified. It is likely that the first changes to occur following axonal injury are signal relay events that transduce the injury signal from the axon to the cell body. Here we focus on the c-Jun N-terminal kinase (JNK1-3) family, a signaling pathway implicated in axonal injury signaling and neurodegenerative apoptosis, and likely to function as a central node in axonal injury-induced RGC death. We show that JNK signaling is activated immediately after axonal injury in RGC axons at the site of injury. Following its early activation, sustained JNK signaling is observed in axonally-injured RGCs in the form of JUN phosphorylation and upregulation. Using mice lacking specific Jnk isoforms, we show that Jnk2 and Jnk3 are the isoforms activated in injured axons. Combined deficiency of Jnk2 and Jnk3 provides robust long-term protection against axonal injury-induced RGC death and prevents downregulation of the RGC marker, BRN3B, and phosphorylation of JUN. Finally, using Jun deficient mice, we show that JUN-dependent pathways are important for axonal injury-induced RGC death. Together these data demonstrate that JNK signaling is the major early pathway triggering RGC death after axonal injury and may directly link axon injury to transcriptional activity that controls RGC death.


Neurobiology of Disease | 2014

DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury

Kimberly A. Fernandes; Jeffrey M. Harder; Simon W. M. John; Peter Shrager; Richard T. Libby

Injury to retinal ganglion cell (RGC) axons triggers rapid activation of Jun N-terminal kinase (JNK) signaling, a major prodeath pathway in injured RGCs. Of the multiple kinases that can activate JNK, dual leucine kinase (Dlk) is known to regulate both apoptosis and Wallerian degeneration triggered by axonal insult. Here we tested the importance of Dlk in regulating somal and axonal degeneration of RGCs following axonal injury. Removal of DLK from the developing optic cup did not grossly affect developmental RGC death or inner plexiform layer organization. In the adult, Dlk deficiency significantly delayed axonal-injury induced RGC death. The activation of JUN was also attenuated in Dlk deficient retinas. Dlk deficiency attenuated the activation of the somal pool of JNK but did not prevent activation of the axonal pool of JNK after axonal injury, indicating that JNK activation in different cellular compartments of an RGC following axonal injury is regulated by distinct upstream kinases. In contrast to its robust influence on somal degeneration, Dlk deficiency did not alter RGC axonal degeneration after axonal injury as assessed using physiological readouts of optic nerve function.


Experimental Eye Research | 2015

Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities

Kimberly A. Fernandes; Jeffrey M. Harder; Peter A. Williams; Rebecca L. Rausch; Amy E. Kiernan; K. Saidas Nair; Michael G. Anderson; Simon W. M. John; Gareth R. Howell; Richard T. Libby

While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.


Experimental Eye Research | 2013

JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells

Kimberly A. Fernandes; Jeffrey M. Harder; Jessica Kim; Richard T. Libby

The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUNs dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury.


Journal of Neuroinflammation | 2014

Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush

Caitlin E. Mac Nair; Kimberly A. Fernandes; Cassandra L. Schlamp; Richard T. Libby; Robert W. Nickells

BackgroundGlaucoma is an optic neuropathy that is characterized by the loss of retinal ganglion cells (RGCs) initiated by damage to axons in the optic nerve. The degeneration and death of RGCs has been thought to occur in two waves. The first is axogenic, caused by direct insult to the axon. The second is somatic, and is thought to be caused by the production of inflammatory cytokines from the activated retinal innate immune cells. One of the cytokines consistently linked to glaucoma and RGC damage has been TNFα. Despite strong evidence implicating this protein in neurodegeneration, a direct injection of TNFα does not mimic the rapid loss of RGCs observed after acute optic nerve trauma or exposure to excitotoxins. This suggests that our understanding of TNFα signaling is incomplete.MethodsRGC death was induced by optic nerve crush in mice. The role of TNFα in this process was examined by quantitative PCR of Tnfα gene expression, and quantification of cell loss in Tnfα-/- mice or in wild-type animals receiving an intraocular injection of exongenous TNFα either before or after crush. Signaling pathways downstream of TNFα were examined by immunolabeling for JUN protein accumulation or activation of EGFP expression in NFκB reporter mice.ResultsOptic nerve crush caused a modest increase in Tnfα gene expression, with kinetics similar to the activation of both macroglia and microglia. A pre-injection of TNFα attenuated ganglion cell loss after crush, while ganglion cell loss was more severe in Tnfα-/- mice. Conversely, over the long term, a single exposure to TNFα induced extrinsic apoptosis in RGCs. Müller cells responded to exogenous TNFα by accumulating JUN and activating NFkB.ConclusionEarly after optic nerve crush, TNFα appears to have a protective role for RGCs, which may be mediated through Müller cells.


Scientific Reports | 2012

The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice

Jeffrey M. Harder; Kimberly A. Fernandes; Richard T. Libby

Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms.


Molecular and Cellular Neuroscience | 2012

BCL2L1 (BCL-x) promotes survival of adult and developing retinal ganglion cells

Jeffrey M. Harder; Qian Ding; Kimberly A. Fernandes; Jonathan D. Cherry; Lin Gan; Richard T. Libby

The Bcl-2 family is responsible for regulating cell death pathways in neurons during development, after injury and in disease. The activation of the pro-death family member BAX is often the final step before cell death in neurons. Pro-survival family members such as BCL-X (BCL2L1) act to inhibit BAX activation. Overexpression studies have suggested that BCL-X could play an important physiological role in mediating neuronal viability. Loss-of-function studies performed in vivo have implicated BCL-X as a mediator of neuronal survival during the early stages of neurodevelopment. To assess whether BCL-X is needed to promote the survival of neurons in the central nervous system throughout life, Bcl-x was conditionally removed from the optic cup or throughout the adult mouse. During development BCL-X was required for the survival of differentiating retinal ganglion cells (RGCs) leading up to their normal window of developmental death. Despite its expression in adult RGCs, BCL-X was not required for maintaining RGC viability in adult retinas. However, the loss of BCL-X in adult RGCs did significantly increase the rate of death of RGCs after axonal injury. Thus, in developing and injured RGCs there appears to be an active cell survival program preventing neuronal death.


PLOS ONE | 2014

Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice

Liang Huang; Fang Hu; Xiaoling Xie; Jeffery Harder; Kimberly A. Fernandes; Xiang-Yun Zeng; Richard T. Libby; Lin Gan

Purpose To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs). Methods Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed. Results Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment. Conclusion Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice.


The Journal of Neuroscience | 2017

KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS

Akintomide Apara; Joana Galvao; Yan Wang; Murray G. Blackmore; Allison Trillo; Keiichiro Iwao; Dale P. Brown; Kimberly A. Fernandes; Abigail Huang; Tu Nguyen; Masoumeh Ashouri; Xiong Zhang; Peter X. Shaw; Noelia J. Kunzevitzky; Darcie L. Moore; Richard T. Libby; Jeffrey L. Goldberg

Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes. We identified a novel binding partner, MAPK10/JNK3 kinase, and found that JNK3 (c-Jun N-terminal kinase 3) is critical for KLF9s axon-growth-suppressive activity. Interfering with a JNK3-binding domain or mutating two newly discovered serine phosphorylation acceptor sites, Ser106 and Ser110, effectively abolished KLF9s neurite growth suppression in vitro and promoted axon regeneration in vivo. These findings demonstrate a novel, physiologic role for the interaction of KLF9 and JNK3 in regenerative failure in the optic nerve and suggest new therapeutic strategies to promote axon regeneration in the adult CNS. SIGNIFICANCE STATEMENT Injured CNS nerves fail to regenerate spontaneously. Promoting intrinsic axon growth capacity has been a major challenge in the field. Here, we demonstrate that knocking down Krüppel-like transcription factor 9 (KLF9) via shRNA promotes long-distance axon regeneration after optic nerve injury and uncover a novel and important KLF9–JNK3 interaction that contributes to axon growth suppression in vitro and regenerative failure in vivo. These studies suggest potential therapeutic approaches to promote axon regeneration in injury and other degenerative diseases in the adult CNS.


Cell Death and Disease | 2017

JUN is important for ocular hypertension-induced retinal ganglion cell degeneration

Stephanie B. Syc-Mazurek; Kimberly A. Fernandes; Richard T. Libby

Ocular hypertension, a major risk factor for glaucoma, is thought to trigger glaucomatous neurodegeneration through injury to retinal ganglion cell (RGC) axons. The molecular signaling pathway leading from ocular hypertension to RGC degeneration, however, is not well defined. JNK signaling, a component of the mitogen-activated protein kinase (MAPK) family, and its canonical target, the transcription factor JUN, have been shown to regulate neurodegeneration in many different systems. JUN is expressed after glaucoma-relevant injuries and Jun deficiency protects RGCs after mechanical injury to the optic nerve. Here, we tested the importance of JNK–JUN signaling for RGC death after ocular hypertensive axonal injury in an age-related, mouse model of ocular hypertension. Immunohistochemistry was performed to evaluate JUN expression in ocular hypertensive DBA/2J mice. JUN was expressed in a temporal and spatial pattern consistent with a role in glaucomatous injury. To determine the importance of JUN in ocular hypertension-induced RGC death, a floxed allele of Jun and a retinal expressed cre recombinase (Six3-cre) were backcrossed onto the DBA/2J background. Intraocular pressure (IOP) and gross morphology of the retina and optic nerve head were assessed to determine whether removing Jun from the developing retina altered IOP elevation or retinal development. Jun deficiency in the retina did not alter DBA/2J IOP elevation or retinal development. Optic nerves and retinas were assessed at ages known to have glaucomatous damage in DBA/2J mice. Jun deficiency protected RGC somas from ocular hypertensive injury, but did not protect RGC axons from glaucomatous neurodegeneration. Jun is a major regulator of RGC somal degeneration after glaucomatous ocular hypertensive injury. These results suggest in glaucomatous neurodegeneration, JNK–JUN signaling has a major role as a pro-death signaling pathway between axonal injury and somal degeneration.

Collaboration


Dive into the Kimberly A. Fernandes's collaboration.

Top Co-Authors

Avatar

Richard T. Libby

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Harder

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simon W. M. John

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Lin Gan

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Peter Shrager

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephanie B. Syc-Mazurek

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wilson

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rebecca L. Rausch

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Abbot F. Clark

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge