Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly A. Hughes is active.

Publication


Featured researches published by Kimberly A. Hughes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity

Miguel Corona; Rodrigo A. Velarde; Silvia C. Remolina; Adrienne Moran-Lauter; Ying Wang; Kimberly A. Hughes; Gene E. Robinson

In most animals, longevity is achieved at the expense of fertility, but queen honey bees do not show this tradeoff. Queens are both long-lived and fertile, whereas workers, derived from the same genome, are both relatively short-lived and normally sterile. It has been suggested, on the basis of results from workers, that vitellogenin (Vg), best known as a yolk protein synthesized in the abdominal fat body, acts as an antioxidant to promote longevity in queen bees. We explored this hypothesis, as well as related roles of insulin–IGF-1 signaling and juvenile hormone. Vg was expressed in thorax and head fat body cells in an age-dependent manner, with old queens showing much higher expression than workers. In contrast, Vg expression in worker head was much lower. Queens also were more resistant to oxidative stress than workers. These results support the hypothesis that caste-specific differences in Vg expression are involved in queen longevity. Consistent with predictions from Drosophila, old queens had lower head expression of insulin-like peptide and its putative receptors than did old workers. Juvenile hormone affected the expression of Vg and insulin–IGF-1 signaling genes in opposite directions. These results suggest that conserved and species-specific mechanisms interact to regulate queen bee longevity without sacrificing fecundity.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

A possible non-sexual origin of mate preference: are male guppies mimicking fruit?

F. Helen Rodd; Kimberly A. Hughes; Gregory F. Grether; Colette T. Baril

In most animals, the origins of mating preferences are not clear. The ‘sensory–bias’ hypothesis proposes that biases in female sensory or neural systems are important in triggering sexual selection and in determining which male traits will become elaborated into sexual ornaments. Subsequently, other mechanisms can evolve for discriminating between high–and low–quality mates. Female guppies (Poecilia reticulata) generally show a preference for males with larger, more chromatic orange spots. It has been proposed that this preference originated because it enabled females to obtain high–quality mates. We present evidence for an alternative hypothesis, that the origin of the preference is a pleiotropic effect of a sensory bias for the colour orange, which might have arisen in the context of food detection. In field and laboratory experiments, adult guppies of both sexes were more responsive to orange–coloured objects than to objects of other colours, even outside a mating context. Across populations, variation in attraction to orange objects explained 94% of the inter–population variation in female mate preference for orange coloration on males. This is one of the first studies to show both an association between a potential trigger of a mate–choice preference and a sexually selected trait, and also that an innate attraction to a coloured inanimate object explains almost all of the observed variation in female mate choice. These results support the ‘sensory–bias’ hypothesis for the evolution of mating preferences.


Nature | 2006

Frequency-dependent survival in natural guppy populations

Robert Olendorf; F. Helen Rodd; David Punzalan; Anne E. Houde; Carla Hurt; David N. Reznick; Kimberly A. Hughes

The maintenance of genetic variation in traits under natural selection is a long-standing paradox in evolutionary biology. Of the processes capable of maintaining variation, negative frequency-dependent selection (where rare types are favoured by selection) is the most powerful, at least in theory; however, few experimental studies have confirmed that this process operates in nature. One of the most extreme, unexplained genetic polymorphisms is seen in the colour patterns of male guppies (Poecilia reticulata). Here we manipulated the frequencies of males with different colour patterns in three natural populations to estimate survival rates, and found that rare phenotypes had a highly significant survival advantage compared to common phenotypes. Evidence from humans and other species implicates frequency-dependent survival in the maintenance of molecular, morphological and health-related polymorphisms. As a controlled manipulation in nature, this study provides unequivocal support for frequency-dependent survival—an evolutionary process capable of maintaining extreme polymorphism.


Nature | 2015

Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

Cameron K. Ghalambor; Kim L. Hoke; Emily W. Ruell; Eva K. Fischer; David N. Reznick; Kimberly A. Hughes

Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively little attention; however, our results suggest that it may be an important mechanism that predicts evolutionary responses to new environments.Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively little attention; however, our results suggest that it may be an important mechanism that predicts evolutionary responses to new environments.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A test of evolutionary theories of aging

Kimberly A. Hughes; Julie A. Alipaz; Jenny Drnevich; Rose M. Reynolds

Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. The two leading theories posit that aging is due to (i) pleiotropic genes with beneficial early-life effects but deleterious late-life effects (“antagonistic pleiotropy”) or (ii) mutations with purely deleterious late-life effects (“mutation accumulation”). Previous attempts to distinguish these theories have been inconclusive because of a lack of unambiguous, contrasting predictions. We conducted experiments with Drosophila based on recent population-genetic models that yield contrasting predictions. Genetic variation and inbreeding effects increased dramatically with age, as predicted by the mutation theory. This increase occurs because genes with deleterious effects with a late age of onset are unopposed by natural selection. Our findings provide the strongest support yet for the mutation theory.


Mechanisms of Ageing and Development | 2005

Gene expression patterns associated with queen honey bee longevity

Miguel Corona; Kimberly A. Hughes; Daniel Weaver; Gene E. Robinson

The oxidative stress theory of aging proposes that accumulation of oxidative damage is the main proximate cause of aging and that lifespan is determined by the rate at which this damage occurs. Two predictions from this theory are that long-lived organisms produce fewer ROS or have increased antioxidant production. Based in these predictions, molecular mechanisms to promote longevity could include either changes in the regulation of mitochondrial genes that affect ROS production or elevated expression of antioxidant genes. We explored these possibilities in the honey bee, a good model for the study of aging because it has a caste system in which the same genome produces both a long-lived queen and a short-lived worker. We measured mRNA levels for genes encoding eight of the most prominent antioxidant enzymes and five mitochondrial proteins involved in respiration. The expression of antioxidant genes generally decreased with age in queens, but not in workers. Expression of most mitochondrial genes, in particular CytC, was higher in young queens, but these genes showed a faster age-related decline relative to workers. One exception to this trend was COX-I in thorax. This resulted in higher COX-I/CytC ratios in old queens compared to old workers, which suggests caste-specific differences in mitochondrial function that might be related to the caste-specific differences in longevity. Queen honey bee longevity appears to have evolved via mechanisms other than increased antioxidant gene expression.


Evolution | 1995

THE EVOLUTIONARY GENETICS OF MALE LIFE-HISTORY CHARACTERS IN DROSOPHILA MELANOGASTER

Kimberly A. Hughes

Alternative models of the maintenance of genetic variability, theories of life‐history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life‐history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age‐specific competitive mating ability, age‐specific survivorship, body mass, and fertility. Variance‐component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation‐accumulation theory, but not the antagonistic‐pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life‐history characters are larger than those for body weight. Finally, this set of male life‐history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.


BMC Genomics | 2011

Sequencing and characterization of the guppy ( Poecilia reticulata ) transcriptome

Bonnie A. Fraser; Cameron J. Weadick; Ilana Janowitz; F. Helen Rodd; Kimberly A. Hughes

BackgroundNext-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata) transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history.ResultsWe generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs), and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in a congeneric species, the sailfin molly (Poecilia latipinna). Over 40% of reads from the sailfin molly sample aligned to the guppy transcriptome.ConclusionsWe show that next-generation sequencing provided a reliable and broad reference transcriptome. This resource allowed us to identify candidate gene variants, SNPs in coding regions, and sex-specific gene expression, and permitted quantitative analysis of differential gene expression.


Nature | 2013

Mating advantage for rare males in wild guppy populations

Kimberly A. Hughes; Anne E. Houde; Anna C. Price; F. Helen Rodd

To understand the processes that maintain genetic diversity is a long-standing challenge in evolutionary biology, with implications for predicting disease resistance, response to environmental change, and population persistence. Simple population genetic models are not sufficient to explain the high levels of genetic diversity sometimes observed in ecologically important traits. In guppies (Poecilia reticulata), male colour pattern is both diverse and heritable, and is arguably one of the most extreme examples of morphological polymorphism known. Negative frequency-dependent selection (NFDS), a form of selection in which genotypes are favoured when they are rare, can potentially maintain such extensive polymorphism, but few experimental studies have confirmed its operation in nature. Here we use highly replicated experimental manipulations of natural populations to show that males with rare colour patterns have higher reproductive fitness, demonstrating NFDS mediated by sexual selection. Rare males acquired more mates and sired more offspring compared to common males and, as previously reported, had higher rates of survival. Orange colour, implicated in other studies of sexual selection in guppies, did predict male reproductive success, but only in one of three populations. These data support the hypothesis that NFDS maintains diversity in the colour patterns of male guppies through two selective agents, mates and predators. Similar field-based manipulations of genotype frequencies could provide a powerful approach to reveal the underlying ecological and behavioural mechanisms that maintain genetic and phenotypic diversity.


Evolutionary Ecology | 2005

Perceptual processes and the maintenance of polymorphism through frequency-dependent predation

David Punzalan; F. Helen Rodd; Kimberly A. Hughes

One of the key challenges of both ecology and evolutionary biology is to understand the mechanisms that maintain diversity. Negative frequency-dependent selection is a powerful mechanism for maintaining variation in the population as well as species diversity in the community. There are a number of studies showing that this type of selection, where individuals of a rare type (i.e. a rare morph or a rare species) experience higher survival than those of more common type(s). However, it is still not clear how frequency-dependent selection operates. Search image formation has been invoked as a possible, proximate explanation. Although the conceptual link between search image and frequency-dependent predation is often assumed in ecological and evolutionary studies, a review of the literature reveals a paucity of evidence demonstrating the occurrence of both in a natural predator-prey system. Advances in the field of psychology strongly support the existence of search image, yet these findings are not fully recognized in the realm of ecology and evolutionary biology, in part, we feel because of confusion and inconsistencies in terminology. Here we try to simplify the language, clarify the advances in the study of frequency-dependent predation and search image, and suggest avenues for future research. We feel that the investigations of both proximate (perceptual mechanisms) and ultimate (pattern of predation) processes are necessary to fully understand the importance of individual behavioural processes for mediating evolutionary and ecological diversity.

Collaboration


Dive into the Kimberly A. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Leips

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Travis

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Brittany Kraft

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim L. Hoke

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge