Kimberly A. Terrell
Smithsonian Conservation Biology Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kimberly A. Terrell.
Frontiers in Ecology and the Environment | 2014
Sara Souther; Morgan W. Tingley; Viorel D. Popescu; David T. S. Hayman; Maureen E. Ryan; Tabitha A. Graves; Brett Hartl; Kimberly A. Terrell
11 Although shale drilling operations for oil and natural gas have increased greatly in the past decade, few studies directly quantify the impacts of shale development on plants and wildlife. We evaluate knowledge gaps related to shale development and prioritize research needs using a quantitative framework that includes spatial and tem- poral extent, mitigation difficulty, and current level of understanding. Identified threats to biota from shale development include: surface and groundwater contamination; diminished stream flow; stream siltation; habitat loss and fragmentation; localized air, noise, and light pollution; climate change; and cumulative impacts. We find the highest research priorities to be probabilistic threats (underground chemical migration; contaminant release during storage, during disposal, or from accidents; and cumulative impacts), the study of which will require major scientific coordination among researchers, industry, and government decision makers. Taken together, our research prioritization outlines a way forward to better understand how energy development affects the natural world.
Journal of Andrology | 2009
Adrienne E. Crosier; Josephine N. Henghali; JoGayle Howard; Budhan S. Pukazhenthi; Kimberly A. Terrell; Laurie Marker; David E. Wildt
Sperm cryopreservation, in combination with assisted reproductive techniques, is a valuable tool for the genetic management of endangered felids. However, the acrosome of the cheetah spermatozoon is especially sensitive to cryopreservation, with approximately 40% of spermatozoa experiencing acrosomal damage immediately after thawing and then another approximately 15% loss during the next 4 hours in vitro. Additionally, thawing causes a reduction in sperm motility by approximately 20% with another decrease of approximately 12% during subsequent incubation in vitro. We hypothesized that slow removal of glycerol from cryopreserved cheetah spermatozoa using an Accudenz gradient would improve acrosomal integrity, sperm motility longevity, and structural morphology. Accudenz was compared with traditional cheetah sperm processing methods for glycerol removal that involves washing, multistep resuspension, and swim-up processing. Electroejaculates (n = 21 total from 8 males) were washed in Ham F10 medium, and sperm pellets were resuspended in TEST-yolk buffer with 0% glycerol. Samples were cryopreserved in straws in 4% final glycerol, thawed, and assessed for percent intact acrosomes (% IA), percent motility (% M), and forward progressive status (FPS; scale, 0-5). Sperm motility index (SMI) was calculated as (% M + [FPS x 20]) / 2. In study 1, glycerol removal by centrifugation through an Accudenz gradient (4%, 10%) was compared with traditional sperm washing (control) and multistep resuspension protocols. At each time after centrifugation (hourly for 4 hours), % IA was improved (P < .05) for Accudenz (range, 36%-39%) compared with control (30%-33%) and multistep (29%-33%) treatments. In study 2, a modified Accudenz protocol was compared with traditional washing and was found to improve (P < .05) SMI (range, 52-64) compared with controls (range, 41-52) at each time postthaw after centrifugation. In study 3, swim-up processed sperm were compared with those treated by centrifugation through Accudenz and traditional sperm washing for improving sperm morphology. The percentage of structurally-normal sperm recovered postthawing increased (P < .05) for both the Accudenz (38%) and swim-up (33%) treatments compared with controls (21%). Percent IA and SMI also were improved (P < .05) for Accudenz (range, 39%-47% and 46-59, respectively) compared with controls (range, 26%-33% and 40-53, respectively). Results indicate that using Accudenz for glycerol removal from cryopreserved cheetah sperm mitigates the significant loss in sperm quality that occurs after freeze-thawing. This alleviation of cellular damage resulting from cryopreservation contributes to a more than 10% improvement in overall sperm motility and, more importantly, allows retention of 40% or more of sperm with intact acrosomes.
Biology of Reproduction | 2010
Kimberly A. Terrell; David E. Wildt; Nicola M. Anthony; Barry D. Bavister; S.P. Leibo; Linda M. Penfold; Laurie Marker; Adrienne E. Crosier
Cheetahs and certain other felids consistently ejaculate high proportions (≥60%) of malformed spermatozoa, a condition known as teratospermia, which is prevalent in humans. Even seemingly normal spermatozoa from domestic cat teratospermic ejaculates have reduced fertilizing capacity. To understand the role of sperm metabolism in this phenomenon, we conducted a comparative study in the normospermic domestic cat versus the teratospermic cat and cheetah with the general hypothesis that sperm metabolic function is impaired in males producing predominantly pleiomorphic spermatozoa. Washed ejaculates were incubated in chemically defined medium containing glucose and pyruvate. Uptake of glucose and pyruvate and production of lactate were assessed using enzyme-linked fluorescence assays. Spermatozoa from domestic cats and cheetahs exhibited similar metabolic profiles, with minimal glucose metabolism and approximately equimolar rates of pyruvate uptake and lactate production. Compared to normospermic counterparts, pyruvate and lactate metabolism were reduced in teratospermic cat and cheetah ejaculates, even when controlling for sperm motility. Rates of pyruvate and lactate (but not glucose) metabolism were correlated positively with sperm motility, acrosomal integrity, and normal morphology. Collectively, our findings reveal that pyruvate uptake and lactate production are reliable, quantitative indicators of sperm quality in these two felid species and that metabolic function is impaired in teratospermic ejaculates. Furthermore, patterns of substrate utilization are conserved between these species, including the unexpected lack of exogenous glucose metabolism. Because glycolysis is required to support sperm motility and capacitation in certain other mammals (including dogs), the activity of this pathway in felid spermatozoa is a target for future investigation.
PLOS ONE | 2015
Emma K. Bales; Oliver Hyman; Andrew H. Loudon; Reid N. Harris; Gregory Lipps; Eric Chapman; Kenneth Roblee; John D. Kleopfer; Kimberly A. Terrell
Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0–0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.
Conservation Biology | 2014
Clare E. Aslan; Malin L. Pinsky; Maureen E. Ryan; Sara Souther; Kimberly A. Terrell
Conservation practitioners and scientists are often faced with seemingly intractable problems in which traditional approaches fail. While other sectors (e.g., business) frequently emphasize creative thinking to overcome complex challenges, creativity is rarely identified as an essential skill for conservationists. Yet more creative approaches are urgently needed in the effort to sustain Earths biodiversity. We identified 4 strategies to develop skills in creative thinking and discuss underlying research and examples supporting each strategy. First, by breaking down barriers between disciplines and surrounding oneself with unfamiliar people, concepts, and perspectives, one can expand base knowledge and experiences and increase the potential for new combinations of ideas. Second, by meeting people where they are (both literally and figuratively), one exposes oneself to new environments and perspectives, which again broadens experiences and increases ability to communicate effectively with stakeholders. Third, by embracing risk responsibly, one is more likely to develop new, nontraditional solutions and be open to high-impact outcomes. Finally, by following a cycle of learning, struggle, and reflection, one can trigger neurophysiological changes that allow the brain to become more creative. Creativity is a learned trait, rather than an innate skill. It can be actively developed at both the individual and institutional levels, and learning to navigate the relevant social and practical barriers is key to the process. To maximize the success of conservation in the face of escalating challenges, one must take advantage of what has been learned from other disciplines and foster creativity as both a professional skill and an essential component of career training and individual development.
PLOS ONE | 2015
Diana C. Koester; Elizabeth W. Freeman; Janine L. Brown; David E. Wildt; Kimberly A. Terrell; Ashley D. Franklin; Adrienne E. Crosier
The collective cheetah (Acinonyx jubatus) population in zoological institutions has never been self-sustaining because of challenges in natural reproduction. A retrospective analysis of North American zoo-breeding records has revealed that >90% of litters produced since 2003 occurred in facilities ‘off-display’ from the public. We examined seminal, endocrine, and behavioral traits of 29 adult male cheetahs that were: 1) managed in public exhibit or off-display facilities; 2) maintained by different numbers of cheetah-specific care-givers; and 3) living adjacent to varying numbers of adult conspecifics. Cheetahs housed off-display produced more total motile sperm/ejaculate (P = 0.04) than on-exhibit males. This finding was mirrored in our laboratory’s historical records where two-fold more total motile sperm (P < 0.01) were measured in ejaculates from individuals with no public exposure (n = 43) compared to on-exhibit (n = 116) counterparts. Males at institutions with ≤3 care-givers also produced more total motile sperm/ejaculate (P < 0.03) and spent more time behaviorally active (P < 0.01) than at facilities using >3 care-givers. Exposure to high numbers of conspecifics within the same institution did not impact (P > 0.05) seminal traits, and presence of the public, care-giver number, or animals/facility had no influence (P > 0.05) on androgen or glucocorticoid excretion or other behavioral metrics. Findings indicate that male cheetahs are sensitive to general public exposure and too many care-givers, resulting in compromised motile sperm output/ejaculate with mechanism of action unrelated to altered androgen or glucocorticoid excretion.
Biology of Reproduction | 2011
Kimberly A. Terrell; David E. Wildt; Nicola M. Anthony; Barry D. Bavister; S.P. Leibo; Linda M. Penfold; Laurie Marker; Adrienne E. Crosier
We have previously reported a lack of glucose uptake in domestic cat and cheetah spermatozoa, despite observing that these cells produce lactate at rates that correlate positively with sperm function. To elucidate the role of glycolysis in felid sperm energy production, we conducted a comparative study in the domestic cat and cheetah, with the hypothesis that sperm motility and viability are maintained in both species in the absence of glycolytic metabolism and are fueled by endogenous substrates. Washed ejaculates were incubated in chemically defined medium in the presence/absence of glucose and pyruvate. A second set of ejaculates was exposed to a chemical inhibitor of either lactate dehydrogenase (sodium oxamate) or glyceraldehyde-3-phosphate dehydrogenase (alpha-chlorohydrin). Sperm function (motility and acrosomal integrity) and lactate production were assessed, and a subset of spermatozoa was assayed for intracellular glycogen. In both the cat and cheetah, sperm function was maintained without exogenous substrates and following lactate dehydrogenase inhibition. Lactate production occurred in the absence of exogenous hexoses, but only if pyruvate was present. Intracellular glycogen was not detected in spermatozoa from either species. Unexpectedly, glycolytic inhibition by alpha-chlorohydrin resulted in an immediate decline in sperm motility, particularly in the domestic cat. Collectively, our findings reveal an essential role of the glycolytic pathway in felid spermatozoa that is unrelated to hexose metabolism or lactate formation. Instead, glycolytic enzyme activity could be required for the metabolism of endogenous lipid-derived glycerol, with fatty acid oxidation providing the primary energy source in felid spermatozoa.
Journal of Neuroscience Methods | 2007
Kimberly A. Terrell; Terri Rasmussen; Cyndi Trygg; Bruce A. Bunnell; Wayne R. Buck
Rapid and accurate genotype determination is ideal for the maintenance of breeding colonies of laboratory animal models of genetic disease. The rhesus macaque and murine (twitcher) models of globoid cell leukodystrophy have a dinucleotide deletion or single nucleotide substitution, respectively, which abolish ceramide beta-galactosidase activity and are authentic models of Krabbe disease. We report a molecular beacon PCR assay for each species which allows unambiguous determination of the genotype in under 4h. The assay works reliably with DNA extracted from hair roots using Chelex-100 in a 20 min, 100 degrees C incubation. We demonstrate that genotyping from hair roots is a preferred alternative to collecting blood or tissue for DNA extraction because it reduces animal distress, uses an inexpensive reagent, and is simpler and faster. Following amplification on a standard thermocycler with a 96-well plate format, these molecular beacon assays can be read on a standard laboratory fluorescent plate reader, eliminating the need to use a real-time thermocycler or to open the plate for subsequent restriction enzyme digestion and gel electrophoresis. The multiplexed ratio of fluorescence from wild-type- and mutant-specific beacons reporting at 560 nm and 535 nm wavelengths is distinct for each genotype.
Conservation Physiology | 2016
Anna E. Savage; Kimberly A. Terrell; Brian Gratwicke; Nichole Mattheus; Lauren Augustine; Robert C. Fleischer
Amphibians are susceptible to a disease-causing fungus known as Bd. We experimentally infected lowland leopard frogs to determine if Bd infection is associated with altered immune function in the blood. Our study suggests that Bd infected frogs with less active defense proteins in the blood are more susceptible to this deadly fungus.
Reproduction, Fertility and Development | 2017
Diana C. Koester; Elizabeth W. Freeman; David E. Wildt; Kimberly A. Terrell; Ashley D. Franklin; Karen Meeks; Adrienne E. Crosier
Although the free-ranging cheetah is generally socially solitary, as many as 60% of males live in same-sex (usually sibling) coalitions. Under ex situ conditions, the cheetah experiences low reproductive success with only ~18% of males having ever produced young. Most male cheetahs (85%) are managed in captivity in coalitions, but with no data on the influence of social grouping on reproductive parameters. We examined the influence of singleton versus coalition management on various male cheetah physiological traits, including ejaculate quality and gonadal and adrenal hormone metabolite concentrations. We also assessed behaviour within coalitions for evidence of social hierarchy through initiation of interactions with group mates and relatedness to physiological traits. Ejaculate quality (including total motile and structurally normal spermatozoa per ejaculate) and androgen concentration profiles were higher (P<0.05) in coalition compared with singleton males. These results support the conclusion that testis function in the cheetah, specifically related to the development of normal, motile spermatozoa and androgen production, is influenced by management with same-sex conspecifics. The findings have implications for ex situ conservation breeding programs by suggesting that reproductive quality can be enhanced through group maintenance of cheetah males.