Kimberly A. Young
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kimberly A. Young.
Frontiers in Neuroendocrinology | 2011
Kimberly A. Young; Kyle L. Gobrogge; Yan Liu; Zuoxin Wang
The formation of enduring relationships between adult mates (i.e., pair bonds) is an integral aspect of human social behavior and has been implicated in both physical and psychological health. However, due to the inherent complexity of these bonds and the relative rarity with which they are formed in other mammalian species, we know surprisingly little about their underlying neurobiology. Over the past few decades, the prairie vole (Microtus ochrogaster) has emerged as an animal model of pair bonding. Research in this socially monogamous rodent has provided valuable insight into the neurobiological mechanisms that regulate pair bonding behaviors. Here, we review these studies and discuss the neural regulation of three behaviors inherent to pair bonding: the formation of partner preferences, the subsequent development of selective aggression toward unfamiliar conspecifics, and the bi-parental care of young. We focus on the role of vasopressin, oxytocin, and dopamine in the regulation of these behaviors, but also discuss the involvement of other neuropeptides, neurotransmitters, and hormones. These studies may not only contribute to the understanding of pair bonding in our own species, but may also offer insight into the underlying causes of social deficits noted in several mental health disorders.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2008
Kimberly A. Young; Yan Liu; Zuoxin Wang
The formation and maintenance of social bonds in adulthood is an essential component of human health. However studies investigating the underlying neurobiology of such behaviors have been scarce. Microtine rodents offer a unique comparative animal model to explore the neural processes responsible for pair bonding and its associated behaviors. Studies using monogamous prairie voles and other related species have recently offered insight into the neuroanatomical, neurobiological, and neurochemical underpinnings of social attachment. In this review, we will discuss the utility of the microtine rodents in comparative studies by exploring their natural history and social behavior in the laboratory. We will then summarize the data implicating vasopressin, oxytocin, and dopamine in the regulation of pair bonding. Finally, we will discuss the ways in which these neurochemical systems may interact to mediate this complex behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Yan Liu; Brandon J. Aragona; Kimberly A. Young; David M. Dietz; Mohamed Kabbaj; Michelle S. Mazei-Robison; Eric J. Nestler; Zuoxin Wang
The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating, a behavior in which central dopamine (DA) has been implicated. Here, we used male prairie voles to examine the effects of drug exposure on pair bonding and related neural circuitry. In our first experiment, amphetamine (AMPH) motivated behavior was examined using a conditioned place preference (CPP) paradigm and was shown to be mediated by activation of D1-like DA receptors. Next, we examined the effects of repeated AMPH exposure on pair bonding. Intact and saline pretreated control males displayed mating-induced partner preferences, whereas males pretreated with AMPH at the doses effective to induce CPP failed to show mating-induced partner preferences. Such AMPH treatment also enhanced D1, but not D2, DA receptor expression in the nucleus accumbens (NAcc). Furthermore, pharmacological blockade of D1-like DA receptors in the NAcc rescued mating-induced partner preferences in AMPH-treated males. Together, our data indicate that repeated AMPH exposure may narrow the behavioral repertoire of male prairie voles via a DA receptor-specific mechanism in the NAcc, resulting in the impairment of pair bond formation.
Neuroscience & Biobehavioral Reviews | 2011
Kimberly A. Young; Kyle L. Gobrogge; Zuoxin Wang
The use of addictive drugs can have profound short- and long-term consequences on social behaviors. Similarly, social experiences and the presence or absence of social attachments during early development and throughout life can greatly influence drug intake and the susceptibility to drug abuse. The following review details this reciprocal interaction, focusing on common drugs of abuse (e.g., psychostimulants, opiates, alcohol and nicotine) and social behaviors (e.g., maternal, sexual, play, aggressive and bonding behaviors). The neural mechanisms underlying this interaction are discussed, with a particular emphasis on the involvement of the mesocorticolimbic dopamine system.
The Journal of Neuroscience | 2011
Yan Liu; Kimberly A. Young; J. Thomas Curtis; Brandon J. Aragona; Zuoxin Wang
Although the protective effects of social bonds on drug use/abuse have been well documented, we know little about the underlying neural mechanisms. Using the prairie vole (Microtus ochrogaster)—a socially monogamous rodent that forms long-term pair bonds after mating—we demonstrate that amphetamine (AMPH) conditioning induced a conditioned place preference (CPP) in sexually naive (SN), but not pair-bonded (PB), males. Although AMPH treatment induced a similar magnitude of dopamine release in the nucleus accumbens (NAcc) of SN and PB males, it had differential effects on NAcc D1 receptor (D1R) binding. Specifically, AMPH treatment increased D1R binding in SN, but decreased D1R binding in PB males. NAcc D1R, but not D2 receptor, antagonism blocked AMPH-induced CPP in SN males and NAcc D1R activation before AMPH conditioning enabled AMPH-induced CPP in PB males. Together, our data demonstrate that pair-bonding experience decreases the rewarding properties of AMPH through a D1R-mediated mechanism.
The Journal of Neuroscience | 2014
Kimberly A. Young; Yan Liu; Kyle L. Gobrogge; Hui Wang; Zuoxin Wang
Drug addiction has devastating consequences on social behaviors and can lead to the impairment of social bonding. Accumulating evidence indicates that alterations in oxytocin (OT) and dopamine (DA) neurotransmission within brain reward circuitry may be involved. We investigated this possibility, as well as the therapeutic potential of OT for drug-induced social deficits, using the prairie vole (Microtus ochrogaster)—a socially monogamous rodent that forms enduring pair bonds between adult mates. We demonstrate that repeated exposure to the commonly abused psychostimulant amphetamine (AMPH) inhibits the formation of partner preferences (an index of pair bonding) in female prairie voles. AMPH exposure also altered OT and DA neurotransmission in regions that mediate partner preference formation: it decreased OT and DA D2 receptor immunoreactivity in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), respectively, and increased NAcc DA levels. Administration of OT directly into the mPFC of AMPH-exposed voles restored partner preferences, and altered NAcc DA levels, and this effect was dependent on OT receptor activation. Together, these data suggest that repeated AMPH exposure impairs pair bonding through an OT-mediated mechanism, and that OT and DA systems within brain reward circuitry may interact to mediate the complex relationship between drug abuse and social bonding. Further, these results provide empirical support for the idea that the central OT system may represent an important target for the treatment of social deficits in addiction.
Neuroscience Letters | 2009
Y. Pan; Yan Liu; Kimberly A. Young; Zhibin Zhang; Zuoxin Wang
Stressful social experiences early in life, such as maternal separation and social isolation, have enduring effects on the development of the brain and behavior. In the present study in socially monogamous male prairie voles (Microtus ochrogaster), we found that following 6 weeks of social isolation after weaning males spent more time in the closed arms and less time in the open arms during an elevated plus maze (EPM) test, moved more frequently from central to peripheral squares in an open field test, and diminished their preferences for the empty chamber during a two-chamber affiliation test, compared to control males that were housed with siblings. This increased behavioral anxiety in socially isolated males was also associated with enhanced mRNA expression for vasopressin (AVP), oxytocin (OT), corticotrophin releasing factor (CRF), and tyrosine hydroxylase (TH) in the paraventricular nucleus of the hypothalamus (PVN). Together, these data illustrate the importance of the post-weaning social environment on anxiety-related behavior and suggest a potential role of neurochemical systems in the PVN in the regulation of this behavior.
Hormones and Behavior | 2010
Y. Pan; L. Xu; Kimberly A. Young; Zuoxin Wang; Zhibin Zhang
During an agonistic encounter test, dominant male greater long-tailed hamsters (Tscheskia triton) initiated attacks sooner and displayed higher levels of aggression and flank marking behavior than their subordinate counterparts. Accordingly, subordinate males exhibited more defensive behavior than dominant ones. Specific patterns of neuronal activation, measured by Fos-immunoreactive staining (Fos-ir), were found in the hamster brain following agonistic interactions. Increased Fos-ir was observed in the bed nucleus of the stria terminalis (BST), ventromedial hypothalamus (VMH), and medial (MeA) and anterior cortical (ACo) nuclei of the amygdala (AMYG) in both dominant and subordinate males. In contrast, dominant males had significantly higher Fos-ir densities in the medial preoptic area (MPOA) than subordinate males, whereas subordinate males expressed higher densities of Fos-ir in the anterior hypothalamus (AH) and central nucleus of the amygdala (CeA). Additionally, Fos-ir levels in the MPOA were significantly correlated with aggression and Fos-ir levels in the AH and CeA were correlated with defensive behavior. Together, our data indicate distinct patterns of neuronal activation associated with agonistic encounters in a behavior-specific manner in male greater long-tailed hamsters.
Brain Research | 2011
Kimberly A. Young; Yan Liu; Kyle L. Gobrogge; David M. Dietz; Hui Wang; Mohamed Kabbaj; Zuoxin Wang
We have recently established the socially monogamous prairie vole (Microtus ochrogaster) as an animal model with which to investigate the involvement of mesocorticolimbic dopamine (DA) in the amphetamine (AMPH)-induced impairment of social behavior. As the majority of our work, to date, has focused on males, and sex differences are commonly reported in the behavioral and neurobiological responses to AMPH, the current study was designed to examine the behavioral and neurobiological effects of AMPH treatment in female prairie voles. We used a conditioned place preference (CPP) paradigm to determine a dose-response curve for the behavioral effects of AMPH in female prairie voles, and found that conditioning with low to intermediate (0.2 and 1.0 mg/kg), but not very low (0.1 mg/kg), doses of AMPH induced a CPP. We also found that exposure to a behaviorally relevant dose of AMPH (1.0 mg/kg) induced an increase in DA concentration in the nucleus accumbens (NAcc) and caudate putamen but not the medial prefrontal cortex or ventral tegmental area (VTA). Finally, repeated AMPH exposure (1.0 mg/kg once per day for 3 consecutive days; an injection paradigm that has been recently shown to alter DA receptor expression and impair social bonding in male prairie voles) increased D1, but not D2, receptor mRNA in the NAcc, and decreased D2 receptor mRNA and D2-like receptor binding in the VTA. Together, these data indicate that AMPH alters mesocorticolimbic DA neurotransmission in a region- and receptor-specific manner, which, in turn, could have profound consequences on social behavior in female prairie voles.
Neuroscience | 2010
L. Xu; Y. Pan; Kimberly A. Young; Zuoxin Wang; Zhiyong Zhang
Immunoreactive (ir) staining of the neuropeptides oxytocin (OT) and vasopressin (AVP) was performed in the brains of Brandts voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton)-two species that differ remarkably in social behaviors. Social Brandts voles had higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities of AVP-ir cells in the lateral hypothalamus (LH) compared to solitary greater long-tailed hamsters. In contrast, the hamsters had higher densities of OT-ir cells in the anterior hypothalamus (AH) and LH and higher densities of AVP-ir cells in the MPOA than the voles. OT-ir and AVP-ir fibers were also found in many forebrain areas with subtle species differences. Given the roles of OT and AVP in the regulation of social behaviors in other rodent species, our data support the hypothesis that species-specific patterns of central OT and AVP pathways may underlie species differences in social behaviors. However, despite a higher density of OT-ir cells in the paraventricular nucleus of the hypothalamus (PVN) in females than in males in both species, no other sex differences were found in OT-ir or AVP-ir staining. These data failed to support our prediction that a sexually dimorphic pattern of neuropeptide staining in the brain is more apparent in Brandts voles than in greater long-tailed hamsters.