Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly B. Bjugstad is active.

Publication


Featured researches published by Kimberly B. Bjugstad.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells

D. Eugene Redmond; Kimberly B. Bjugstad; Yang D. Teng; Vaclav Ourednik; Jitka Ourednik; Dustin R. Wakeman; Xuejun H. Parsons; Rodolfo Gonzalez; Barbara C. Blanchard; Seung U. Kim; Zezong Gu; Stuart A. Lipton; Eleni A. Markakis; Robert H. Roth; John D. Elsworth; John R. Sladek; Richard L. Sidman; Evan Y. Snyder

Stem cells have been widely assumed to be capable of replacing lost or damaged cells in a number of diseases, including Parkinsons disease (PD), in which neurons of the substantia nigra (SN) die and fail to provide the neurotransmitter, dopamine (DA), to the striatum. We report that undifferentiated human neural stem cells (hNSCs) implanted into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Parkinsonian primates survived, migrated, and had a functional impact as assessed quantitatively by behavioral improvement in this DA-deficit model, in which Parkinsonian signs directly correlate to reduced DA levels. A small number of hNSC progeny differentiated into tyrosine hydroxylase (TH) and/or dopamine transporter (DAT) immunopositive cells, suggesting that the microenvironment within and around the lesioned adult host SN still permits development of a DA phenotype by responsive progenitor cells. A much larger number of hNSC-derived cells that did not express neuronal or DA markers was found arrayed along the persisting nigrostriatal path, juxtaposed with host cells. These hNSCs, which express DA-protective factors, were therefore well positioned to influence host TH+ cells and mediate other homeostatic adjustments, as reflected in a return to baseline endogenous neuronal number-to-size ratios, preservation of extant host nigrostriatal circuitry, and a normalizing effect on α-synuclein aggregation. We propose that multiple modes of reciprocal interaction between exogenous hNSCs and the pathological host milieu underlie the functional improvement observed in this model of PD.


Neuroscience Research | 2012

Defining and designing polymers and hydrogels for neural tissue engineering.

Emily R. Aurand; Kyle J. Lampe; Kimberly B. Bjugstad

The use of biomaterials, such as hydrogels, as neural cell delivery devices is becoming more common in areas of research such as stroke, traumatic brain injury, and spinal cord injury. When reviewing the available research there is some ambiguity in the type of materials used and results are often at odds. This review aims to provide the neuroscience community who may not be familiar with fundamental concepts of hydrogel construction, with basic information that would pertain to neural tissue applications, and to describe the use of hydrogels as cell and drug delivery devices. We will illustrate some of the many tunable properties of hydrogels and the importance of these properties in obtaining reliable and consistent results. It is our hope that this review promotes creative ideas for ways that hydrogels could be adapted and employed for the treatment of a broad range of neurological disorders.


Experimental Neurology | 2008

HUMAN NEURAL STEM CELLS MIGRATE ALONG THE NIGROSTRIATAL PATHWAY IN A PRIMATE MODEL OF PARKINSON’S DISEASE

Kimberly B. Bjugstad; Yang D. Teng; D. Eugene Redmond; John D. Elsworth; Robert H. Roth; Shannon K. Cornelius; Evan Y. Snyder; John R. Sladek

Although evidence of damage-directed neural stem cell (NSC) migration has been well-documented in the rodent, to our knowledge it has never been confirmed or quantified using human NSC (hNSC) in an adult non-human primate modeling a human neurodegenerative disease state. In this report, we attempt to provide that confirmation, potentially advancing basic stem cell concepts toward clinical relevance. hNSCs were implanted into the caudate nucleus (bilaterally) and substantia nigra (unilaterally) of 7, adult St. Kitts African green monkeys (Chlorocebus sabaeus) with previous exposure to systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that disrupts the dopaminergic nigrostriatal pathway. A detailed quantitative analysis of hNSC migration patterns at two time points (4 and 7 months) following transplantation was performed. Density contour mapping of hNSCs along the dorsal-ventral and medial-lateral axes of the brain suggested that >80% of hNSCs migrated from the point of implantation to and along the impaired nigrostriatal pathway. Although 2/3 of hNSCs were transplanted within the caudate, <1% of 3x10(6) total injected donor cells were identified at this site. The migrating hNSC did not appear to be pursuing a neuronal lineage. In the striatum and nigrostriatal pathway, but not in the substantia nigra, some hNSCs were found to have taken a glial lineage. The property of neural stem cells to align themselves along a neural pathway rendered dysfunctional by a given disease is potentially a valuable clinical tool.


Acta Biomaterialia | 2009

Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.

R.M. Namba; A.A. Cole; Kimberly B. Bjugstad; Melissa J. Mahoney

Three-dimensional polymer scaffolds are useful culture systems for neural cell growth and can provide permissive substrates that support neural processes as they extend across lesions in the brain and spinal cord. Degradable poly(ethylene) glycol (PEG) gels have been identified as a particularly promising scaffold material for this purpose; however, process extension within PEG gels is limited to late stages of hydrogel degradation. Here we demonstrate that earlier process extension can be achieved from primary neural cells encapsulated within PEG gels by creating a network of interconnected pores throughout the gel. Our method of incorporating these pores involves co-encapsulating a cell solution and a fibrin network within a PEG gel. The fibrin is subsequently enzymatically degraded under cytocompatible conditions, leaving behind a network of interconnected pores within the PEG gel. The primary neural cell population encapsulated in the gel is of mixed composition, containing differentiated neurons, and multipotent neuronal and glial precursor cells. We demonstrate that the initial presence of fibrin does not influence the cell-fate decisions of the encapsulated precursor cells. We also demonstrate that this fabrication approach enables simple, efficient and uniform seeding of viable cells throughout the entire porous scaffold.


Cell Transplantation | 2005

Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures.

Kimberly B. Bjugstad; D. Eugene Redmond; Yang D. Teng; John D. Elsworth; R.H. Roth; B. C. Blanchard; Evan Y. Snyder; John R. Sladek

Neural stem cells (NSC) have been shown to migrate towards damaged areas, produce trophic factors, and replace lost cells in ways that might be therapeutic for Parkinsons disease (PD). However, there is very little information on the effects of NSC on endogenous cell populations. In the current study, effects of implanted human NSC (hNSC) on endogenous tyrosine hydroxylase-positive cells (TH+ cells) after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were explored in nonhuman primates. After MPTP damage and in PD, the primate brain is characterized by decreased numbers of dopamine neurons in the substantia nigra (SN) and an increase in neurons expressing TH in the caudate nucleus. To determine how implanted NSC might affect these cell populations, 11 St. Kitts African green monkeys were treated with the selective dopaminergic neurotoxin, MPTP. Human NSC were implanted into the left and right caudate nucleus and the right SN of eight of the MPTP-treated monkeys. At either 4 or 7 months after NSC implants, the brains were removed and the size and number of TH+ cells in the target areas were assessed. The results were compared to data obtained from normal untreated control monkeys and to the three unimplanted MPTP-treated monkeys. The majority of hNSC were found bilaterally along the nigrostriatal pathway and in the substantia nigra, while relatively few were found in the caudate. In the presence of NSC, the number and size of caudate TH+ cells returned to non-MPTP-treated control levels. MPTP-induced and hNSC-induced changes in the putamen were less apparent. We conclude that after MPTP treatment in the primate, hNSC prevent the MPTP-induced upregulation of TH+ cells in the caudate and putamen, indicating that hNSC may be beneficial to maintaining a normal striatal environment.


Journal of Biomedical Materials Research Part A | 2010

Biocompatibility of poly(ethylene glycol)‐based hydrogels in the brain: An analysis of the glial response across space and time

Kimberly B. Bjugstad; Kyle J. Lampe; Drew S. Kern; Melissa J. Mahoney

Poly(ethylene glycol) or PEG-based hydrogels provide a useful methodology for tissue engineering and the controlled-release of drugs within the central nervous system (CNS). To be successful, the local neuroinflammatory response to an implant must be well understood. Toward this end, the focus was to examine the localized recruitment and activation of microglia and astrocytes following implantation of PEG-based hydrogels in the brain. Because they are of clinical relevance and may impact brain tissue differently, hydrogels with different mass loss profiles were examined. At all time points, a needle penetration in sham animals evoked a greater astrocytic response than hydrogel conditions. The astrocyte response that ensued varied with degradation rate. An attenuated response was present in more slowly degrading and nondegrading conditions. Relative to sham, hydrogel conditions attenuated the acute microglial response during the week after implant. By 56 days, microglial levels in shams decreased below the observed response in slowly degrading and nondegradable gels, which remained constant overtime. Although the inflammatory response to PEG-based hydrogels was complex depending on degradation rates, the magnitude of the acute microglia response and the long-term astrocyte response were attenuated suggesting the use of these materials for drug and cell delivery to the CNS.


Gene Therapy | 2005

AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL

Dolan Sondhi; Daniel A. Peterson; Eustathia Lela Giannaris; C T Sanders; B S Mendez; Bishnu P. De; A B Rostkowski; Barbara C. Blanchard; Kimberly B. Bjugstad; John R. Sladek; D E Redmond; Philip L. Leopold; Stephen M. Kaminsky; Neil R. Hackett; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, autosomal recessive disease resulting from mutations in the CLN2 gene with consequent deficiency in its product tripeptidyl peptidase I (TPP-I). In the central nervous system (CNS), the deficiency of TPP-I results in the accumulation of proteins in lysosomes leading to a loss of neurons causing progressive neurological decline, and death by ages 10–12 years. To establish the feasibility of treating the CNS manifestations of LINCL by gene transfer, an adeno-associated virus 2 (AAV2) vector encoding the human CLN2 cDNA (AAV2CUhCLN2) was assessed for its ability to establish therapeutic levels of TPP-I in the brain. In vitro studies demonstrated that AAV2CUhCLN2 expressed CLN2 and produced biologically active TPP-I protein of which a fraction was secreted as the pro-TPP-I precursor and was taken up by nontransduced cells (ie, cross-correction). Following AAV2-mediated CLN2 delivery to the rat striatum, enzymatically active TPP-I protein was detected. By immunohistochemistry TPP-I protein was detected in striatal neurons (encompassing nearly half of the target structure) for up to 18 months. At the longer time points following striatal administration, TPP-I-positive cell bodies were also observed in the substantia nigra, frontal cerebral cortex and thalamus of the injected hemisphere, and the frontal cerebral cortex of the noninjected hemisphere. These areas of the brain contain neurons that extend axons into the striatum, suggesting that CNS circuitry may aid the distribution of the gene product. To assess the feasibility of human CNS delivery, a total of 3.6 × 1011 particle units of AAV2CUhCLN2 was administered to the CNS of African green monkeys in 12 distributed doses. Assessment at 5 and 13 weeks demonstrated widespread detection of TPP-I in neurons, but not glial cells, at all regions of injection. The distribution of TPP-I-positive cells was similar between the two time points at all injection sites. Together, these data support the development of direct CNS gene transfer using an AAV2 vector expressing the CLN2 cDNA for the CNS manifestations of LINCL.


Cell Transplantation | 2008

Biocompatibility of PEG-based hydrogels in primate brain.

Kimberly B. Bjugstad; D.E. Redmond; Kyle J. Lampe; Drew S. Kern; John R. Sladek; Melissa J. Mahoney

Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.


Journal of Biomedical Materials Research Part A | 2010

Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture

Kyle J. Lampe; Rachael Mooney; Kimberly B. Bjugstad; Melissa J. Mahoney

Neural precursor cells (NPCs) are a renewable cell source that may be useful for neural cell transplant therapies. Their expansion and differentiation potential have traditionally been explored by culturing them on stiff tissue culture polystyrene. Here we describe advantages of an alternative culture system: bio-inert poly(ethylene glycol) (PEG) hydrogels. Specifically this work reports the effect that macromer weight percent has on the metabolic and apoptotic activity, proliferation, and cellular composition of a mixed population of neurons and multipotent NPCs grown both on 2D and within 3D PEG hydrogels. In 2D culture, hydrogel properties did not affect metabolic or apoptotic activity but did impact cell proliferation and composition leading to an increase in glial cell reactivity as stiffness increased. In 3D culture, low weight percent hydrogels led to greater metabolic activity and lower apoptotic activity with significant proliferation observed only in hydrogels that closely matched the stiffness of native brain tissue. PEG hydrogels therefore provide a versatile in vitro culture system that can be used to culture and expand a variety of neural and glial cell types simply by altering the material properties of the hydrogel.


Biotechnology and Bioengineering | 2009

Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells

Kyle J. Lampe; Rachael M. Namba; Tyler R. Silverman; Kimberly B. Bjugstad; Melissa J. Mahoney

Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic‐acid‐based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. Biotechnol. Bioeng. 2009;103: 1214–1223.

Collaboration


Dive into the Kimberly B. Bjugstad's collaboration.

Top Co-Authors

Avatar

John R. Sladek

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Mahoney

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Barbara C. Blanchard

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kyle J. Lampe

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt R. Freed

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge