Kimberly J. Dougherty
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kimberly J. Dougherty.
Nature Neuroscience | 2010
Martin Hägglund; Lotta Borgius; Kimberly J. Dougherty; Ole Kiehn
Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We used a newly generated vesicular glutamate transporter 2–channelrhodopsin2–yellow fluorescent protein (Vglut2-ChR2-YFP) mouse to directly examine the functional role of glutamatergic neurons in rhythm generation and initiation of locomotion. This mouse line expressed ChR2-YFP in the spinal cord and hindbrain. ChR2-YFP was reliably expressed in Vglut2-positive cells and YFP-expressing cells could be activated by light. Photo-stimulation of either the lumbar spinal cord or the caudal hindbrain was sufficient to both initiate and maintain locomotor-like activity. Our results indicate that glutamatergic neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Martin Hägglund; Kimberly J. Dougherty; Lotta Borgius; Shigeyoshi Itohara; Takuji Iwasato; Ole Kiehn
Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules.
The Journal of Neuroscience | 2010
Kimberly J. Dougherty; Ole Kiehn
Previous studies have shown that a group of ventrally located neurons, designated V2a interneurons, play a key role in maintaining locomotor rhythmicity and in ensuring appropriate left–right alternation during locomotion (Crone et al., 2008, 2009). These V2a interneurons express the transcription factor Chx10. The aim of the present study was to characterize the locomotor-related activity of individual V2a interneurons, their cellular properties, and their detailed anatomical attributes in Chx10-GFP mice. A dorsal horn-removed preparation was developed to allow for visual whole-cell patch recordings from V2a interneurons along the entire lumbar spinal cord while at the same time leaving enough of the spinal cord intact to generate fictive locomotion. During drug-evoked locomotor-like activity, a large proportion of Chx10 cells showed rhythmic firing or membrane potential fluctuations related to either flexor or extensor activity in every lumbar segment. Chx10 cells received predominantly rhythmic excitatory input. Chx10 neurons displayed a wide variety of firing and potential rhythmogenic properties. However, none of these properties was obviously related to the observed rhythmicity during locomotor-like activity. In dual recordings, we found no evidence of Chx10 neuron interconnectivity. Intracellular fills revealed diverse projection patterns with most Chx10 interneurons being local with projections to the central pattern generator and motor neuron regions of the spinal cord and others with long ascending and/or descending branches. These data are compatible with V2a neurons having a role in regulating segmental left–right alternation and ipsilateral motor neuron firing with little effect on rhythm generation.
Annals of the New York Academy of Sciences | 2010
Kimberly J. Dougherty; Ole Kiehn
Studies of mammalian locomotion have been greatly facilitated by the use of the isolated rodent spinal cord preparation that retains the locomotor circuits needed to execute the movement. Physiological and molecular genetic experiments in this preparation have started to unravel the basic circuit organization responsible for walking in mammals. Here, we review these experiments with a focus on the functional role of excitatory V2a interneurons in the mammalian locomotor network. With regard to these neurons and other network structures we also discuss similarities and differences between the mammalian walking central pattern generator (CPG) and the fish swimming CPG.
Biochemical and Biophysical Research Communications | 2010
Ole Kiehn; Kimberly J. Dougherty; Martin Hägglund; Lotta Borgius; Adolfo E. Talpalar; Carlos Ernesto Restrepo
Locomotion in mammals is a complex motor act that involves the activation of a large number of muscles in a well-coordinated pattern. Understanding the network organization of the intrinsic spinal networks that control the locomotion, the central pattern generators, has been a challenge to neuroscientists. However, experiments using the isolated rodent spinal cord and combining electrophysiology and molecular genetics to dissect the locomotor network have started to shed new light on the network structure. In the present review, we will discuss findings that have revealed the role of designated populations of neurons for the key network functions including coordinating muscle activity and generating rhythmic activity. These findings are summarized in proposed organizational principles for the mammalian segmental CPG.
eneuro | 2015
Ilya A. Rybak; Kimberly J. Dougherty; Natalia A. Shevtsova
Visual Overview Abstract The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.
Current Opinion in Neurobiology | 2015
David L. McLean; Kimberly J. Dougherty
Vertebrate locomotion is executed by networks of neurons within the spinal cord. Here, we describe recent advances in our understanding of spinal locomotor control provided by work using optical and genetic approaches in mice and zebrafish. In particular, we highlight common observations that demonstrate simplification of limb and axial motor pool coordination by spinal network modularity, differences in the deployment of spinal modules at increasing speeds of locomotion, and functional hierarchies in the regulation of locomotor rhythm and pattern. We also discuss the promise of intersectional genetic strategies for better resolution of network components and connectivity, which should help us continue to close the gap between theory and function.
Neuroscience | 2009
Kimberly J. Dougherty; Michael Sawchuk; Shawn Hochman
The synthesis enzyme glutamic acid decarboxylase (GAD65 or GAD67) identifies neurons as GABAergic. Recent studies have characterized the physiological properties of spinal cord GABAergic interneurons using lines of GAD67-green fluorescent protein (GFP) transgenic mice. A more complete characterization of their phenotype is required to better understand the role of this population of inhibitory neurons in spinal cord function. Here, we characterize the distribution of lumbar spinal cord GAD67-GFP neurons at postnatal days (P) 0, 7, and 14, and adult based on their co-expression with GABA and determine the molecular phenotype of GAD67-GFP neurons at P14 based on the expression of various neuropeptides, calcium binding proteins, and other markers. At all ages >67% of GFP(+) neurons were also GABA(+). With increasing age; (i) GFP(+) and GABA(+) cell numbers declined, (ii) ventral horn GFP(+) and GABA(+) neurons vanished, and (iii) somatic labeling was reduced while terminal labeling increased. At P14, vasoactive intestinal peptide and bombesin were expressed in approximately 63% and approximately 35% of GFP(+) cells, respectively. Somatostatin was found in a small number of neurons, whereas calcitonin gene-related peptide never co-localized with GFP. Moderate co-expression was found for all the Ca(2+) binding proteins examined. Notably, most laminae I-II parvalbumin(+) neurons were also GFP(+). Neurogranin, a protein kinase C substrate, was found in approximately 1/2 of GFP(+) cells. Lastly, while only 7% of GFP(+) cells contain nitric oxide synthase (NOS), these cells represent a large fraction of all NOS(+) cells. We conclude that GAD67-GFP neurons represent the majority of spinal GABAergic neurons and that mouse dorsal horn GAD67-GFP(+) neurons comprise a phenotypically diverse population.
The Journal of Neuroscience | 2005
Kimberly J. Dougherty; B.A. Bannatyne; E. Jankowska; Piotr Krutki; D.J. Maxwell
Modulatory actions of a metabotropic 5-HT1A&7 membrane receptor agonist and antagonist [(+/-)-8-hydroxy-2-(di-n-propylamino)-tetralin; N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide] and an ionotropic 5-HT3 membrane receptor agonist and antagonist [2-methyl-serotonin (2-Me 5-HT); N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride] were investigated on dorsal horn interneurons mediating reflex actions of group II muscle afferents. All drugs were applied ionophoretically in deeply anesthetized cats. Effects of agonists were tested on extracellularly recorded responses of individual interneurons evoked by electrical stimulation of group II afferents in a muscle nerve. Effects of antagonists were tested against the depression of these responses after stimulation of raphe nuclei. The results show that both 5-HT1A&7 and 5-HT3 membrane receptors are involved in counteracting the activation of dorsal horn interneurons by group II afferents. Because only quantitative differences were found within the sample of the tested neurons, these results suggest that modulatory actions of 5-HT on excitatory and inhibitory interneurons might be similar. The relationship between 5-HT axons and axons immunoreactive for the 5-HT3A receptor subunit, which contact dorsal horn interneurons, was analyzed using immunofluorescence and confocal microscopy. Contacts from both types of axons were found on all interneurons, but their distribution and density varied, and there was no obvious relationship between them. In two of six interneurons, 5-HT3A-immunoreactive axons formed ring-like arrangements around the cell bodies. In previous studies, axons possessing 5-HT3 receptors were found to be excitatory, and as 2-Me 5-HT depressed transmission to dorsal horn interneurons, the results indicate that 5-HT operates at 5-HT3 receptors presynaptic to these neurons to depress excitatory transmission.
Journal of Neurophysiology | 2008
Kimberly J. Dougherty; Shawn Hochman
Dysfunction of the spinal GABAergic system has been implicated in pain syndromes following spinal cord injury (SCI). Since lamina I is involved in nociceptive and thermal signaling, we characterized the effects of chronic SCI on the cellular properties of its GABAergic neurons fluorescently identified in spinal slices from GAD67-GFP transgenic mice. Whole cell recordings were obtained from the lumbar cord of 13- to 17-day-old mice, including those having had a thoracic segment (T8-11) removed 6-9 days prior to experiments. Following chronic SCI, the distribution, incidence, and firing classes of GFP+ cells remained similar to controls, and there were minimal changes in membrane properties in cells that responded to current injection with a single spike. In contrast, cells displaying tonic/initial burst firing had more depolarized membrane potentials, increased steady-state outward currents, and increased spike heights. Moreover, higher firing frequencies and spontaneous plateau potentials were much more prevalent after chronic SCI, and these changes occurred predominantly in cells displaying a tonic firing pattern. Persistent inward currents (PICs) were observed in a similar fraction of cells from spinal transects and may have contributed to these plateaus. Persistent Na+ and L-type Ca2+ channels likely contributed to the currents as both were identified pharmacologically. In conclusion, chronic SCI induces a plastic response in a subpopulation of lamina I GABAergic interneurons. Alterations are directed toward amplifying neuronal responsiveness. How these changes alter spinal sensory integration and whether they contribute to sensory dysfunction remains to be elucidated.