Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly Kontson is active.

Publication


Featured researches published by Kimberly Kontson.


Medical Physics | 2015

Bowtie filters for dedicated breast CT: Theory and computational implementation

Kimberly Kontson; Robert J. Jennings

PURPOSE To design bowtie filters with improved properties for dedicated breast CT to improve image quality and reduce dose to the patient. METHODS The authors present three different bowtie filters designed for a cylindrical 14-cm diameter phantom with a uniform composition of 40/60 breast tissue, which vary in their design objectives and performance improvements. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. Bowtie design #3 eliminates the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. All three designs are obtained using analytical computational methods and linear attenuation coefficients. Thus, the designs do not take into account the effects of scatter. The authors considered this to be a reasonable approach to the filter design problem since the use of Monte Carlo methods would have been computationally intensive. The filter profiles for a cone-angle of 0° were used for the entire length of each filter because the differences between those profiles and the correct cone-beam profiles for the cone angles in our system are very small, and the constant profiles allowed construction of the filters with the facilities available to us. For evaluation of the filters, we used Monte Carlo simulation techniques and the full cone-beam geometry. Images were generated with and without each bowtie filter to analyze the effect on dose distribution, noise uniformity, and contrast-to-noise ratio (CNR) homogeneity. Line profiles through the reconstructed images generated from the simulated projection images were also used as validation for the filter designs. RESULTS Examples of the three designs are presented. Initial verification of performance of the designs was done using analytical computations of HVL, intensity, and effective attenuation coefficient behind the phantom as a function of fan-angle with a cone-angle of 0°. The performance of the designs depends only weakly on incident spectrum and tissue composition. For all designs, the dynamic range requirement on the detector was reduced compared to the no-bowtie-filter case. Further verification of the filter designs was achieved through analysis of reconstructed images from simulations. Simulation data also showed that the use of our bowtie filters can reduce peripheral dose to the breast by 61% and provide uniform noise and CNR distributions. The bowtie filter design concepts validated in this work were then used to create a computational realization of a 3D anthropomorphic bowtie filter capable of achieving a constant effective attenuation coefficient behind the entire field-of-view of an anthropomorphic breast phantom. CONCLUSIONS Three different bowtie filter designs that vary in performance improvements were described and evaluated using computational and simulation techniques. Results indicate that the designs are robust against variations in breast diameter, breast composition, and tube voltage, and that the use of these filters can reduce patient dose and improve image quality compared to the no-bowtie-filter case.


PLOS ONE | 2017

Targeted box and blocks test: Normative data and comparison to standard tests

Kimberly Kontson; Ian Marcus; Barbara Myklebust; Eugene F. Civillico

Background The Box and Block Test (BBT) is a functional outcome measure that is commonly used across multiple clinical populations due to its benefits of ease and speed of implementation; reliable, objective measurement; and repetition of motion. In this study, we introduce a novel outcome measure called the targeted BBT that allows for the study of initiation, grasping, and transport of objects, and also of object release. These modifications to the existing test may increase the ecological validity of the measure while still retaining the previously stated benefits of the standard BBT. Methods 19 able-bodied subjects performed the targeted BBT and two other standard tests. Using an integrated movement analysis framework based on motion capture and ground force data, quantitative information about how subjects completed these tests were captured. Kinematic parameters at the wrist, elbow, shoulder, thorax, and head, as well as measures of postural control, were calculated and statistically compared across the three tests. Results In general, the targeted BBT required significantly higher RoM at the elbow, shoulder, thorax and head when compared to standard tests. Peak angles at these joints were also higher during performance of the targeted BBT. Peak angles and RoM values for the targeted BBT were close to those found in studies of movements of able-bodied individuals performing activities of daily living. Conclusion The targeted BBT allows analysis of repetitive movements, and may more closely model common real-world object manipulation scenarios in which a user is required to control a movement from pick-up to release.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2017

An Integrated Movement Analysis Framework to Study Upper Limb Function: A Pilot Study

Kimberly Kontson; Ian Marcus; Barbara Myklebust; Eugene F. Civillico

The functional capabilities of individuals with upper limb disabilities are assessed throughout rehabilitation and treatment regimens using functional outcome measures. For the upper limb amputee population, there are none which quantitatively take into account the quality of movement while an individual is performing tasks. In this paper, we demonstrate the use of an integrated movement analysis framework, based on motion capture and ground reaction force data, to capture quantitative information about how subjects complete a commonly used functional outcome measure, the Box and Blocks Test (BBT). In order to test the usefulness of the integrated movement analysis framework in capturing the quality of movements during task performance, a motion restriction was induced in able-bodied participants that reproduces some of the limitations imposed by conventional prosthetics. Each subject performed the BBT under normal conditions and also under the motion restriction condition. The motion capture and ground force plates captured movement that significantly differed between the two conditions, with the largest differences seen in shoulder motion, in the range of motions of head tilt and elbow flexion, and in the area of the center of pressure trajectory. These preliminary results show the feasibility of incorporating standardized, quantitative movement analysis into the assessment of function for those with an upper limb disability.


Pm&r | 2018

Evaluation of Performance-Based Outcome Measures for the Upper Limb: A Comprehensive Narrative Review

Sophie Wang; C. Janice Hsu; Lauren Trent; Tiffany Ryan; Nathan T. Kearns; Eugene F. Civillico; Kimberly Kontson

Objective performance‐based outcome measures (OMs) have the potential to provide unbiased and reproducible assessments of limb function. However, very few of these performance‐based OMs have been validated for upper limb (UL) prosthesis users. OMs validated in other clinical populations (eg, neurologic or musculoskeletal conditions) could be used to fill gaps in existing performance‐based OMs for UL amputees. Additionally, a joint review might reveal consistent gaps across multiple clinical populations. Therefore, the objective of this review was to systematically characterize prominent measures used in both sets of clinical populations with regard to (1) location of task performance around the body, (2) possible grips employed, (3) bilateral versus unilateral task participation, and (4) details of scoring mechanisms. A systematic literature search was conducted in EMBASE, Medline, and Cumulative Index to Nursing and Allied Health electronic databases for variations of the following terms: stroke, musculoskeletal dysfunction, amputation, prosthesis, upper limb, outcome, assessments. Articles were included if they described performance‐based OMs developed for disabilities of the UL. Results show most tasks were performed with 1 hand in the space directly in front of the participant. The tip, tripod, and cylindrical grips were most commonly used for the specific tasks. Few measures assessed sensation and movement quality. Overall, several limitations in OMs were identified. The solution to these limitations may be to modify and validate existing measures originally developed for other clinical populations as first steps to more aptly measure prosthesis use while more complete assessments for UL prosthesis users are being developed.


Medical Physics | 2015

Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

Kimberly Kontson; Robert J. Jennings

PURPOSE For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. METHODS Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the penelope Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using penelope and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. RESULTS Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from penelope show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. CONCLUSIONS With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.


Frontiers in Human Neuroscience | 2017

Deployment of mobile EEG technology in an art museum setting: Evaluation of signal quality and usability

Jesus G. Cruz-Garza; Justin A. Brantley; Sho Nakagome; Kimberly Kontson; Murad Megjhani; Dario Robleto; Jose L. Contreras-Vidal

Electroencephalography (EEG) has emerged as a powerful tool for quantitatively studying the brain that enables natural and mobile experiments. Recent advances in EEG have allowed for the use of dry electrodes that do not require a conductive medium between the recording electrode and the scalp. The overall goal of this research was to gain an understanding of the overall usability and signal quality of dry EEG headsets compared to traditional gel-based systems in an unconstrained environment. EEG was used to collect Mobile Brain-body Imaging (MoBI) data from 432 people as they experienced an art exhibit in a public museum. The subjects were instrumented with either one of four dry electrode EEG systems or a conventional gel electrode EEG system. Each of the systems was evaluated based on the signal quality and usability in a real-world setting. First, we describe the various artifacts that were characteristic of each of the systems. Second, we report on each systems usability and their limitations in a mobile setting. Third, to evaluate signal quality for task discrimination and characterization, we employed a data driven clustering approach on the data from 134 of the 432 subjects (those with reliable location tracking information and usable EEG data) to evaluate the power spectral density (PSD) content of the EEG recordings. The experiment consisted of a baseline condition in which the subjects sat quietly facing a white wall for 1 min. Subsequently, the participants were encouraged to explore the exhibit for as long as they wished (piece-viewing). No constraints were placed upon the individual in relation to action, time, or navigation of the exhibit. In this freely-behaving approach, the EEG systems varied in their capacity to record characteristic modulations in the EEG data, with the gel-based system more clearly capturing stereotypical alpha and beta-band modulations.


Archives of Physical Medicine and Rehabilitation | 2018

Comparing Methods of Upper-Limb Prosthesis Simulation in Able-Bodied: Bracing vs. Body-Powered Bypass Prosthesis

Sophie Wang; Conor Bloomer; Kimberly Kontson


Archives of Physical Medicine and Rehabilitation | 2018

Mental Workload Assessment During Simulated Upper Extremity Prosthetic Performance

Christopher Gaskins; Kimberly Kontson; Emma P. Shaw; Isabelle M. Shuggi; Maria J. Ayoub; Jeremy C. Rietschel; Matthew W. Miller; Rodolphe J. Gentili


Archives of Physical Medicine and Rehabilitation | 2018

Evaluation of a Novel Evidence-Based Training Protocol for Upper-Limb Bypass Prostheses: Preliminary Results

Conor Bloomer; Kimberly Kontson


2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob) | 2017

Learning EEG: Identification of novel electroencephalogram classifications and variability of baseline features in a large clinical dataset

David O. Nahmias; Kimberly Kontson; Eugene F. Civillico

Collaboration


Dive into the Kimberly Kontson's collaboration.

Top Co-Authors

Avatar

Eugene F. Civillico

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Barbara Myklebust

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Ian Marcus

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Robert J. Jennings

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Sophie Wang

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge