Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly Marquette is active.

Publication


Featured researches published by Kimberly Marquette.


Molecular Cancer Therapeutics | 2013

Long-term Tumor Regression Induced by an Antibody–Drug Conjugate That Targets 5T4, an Oncofetal Antigen Expressed on Tumor-Initiating Cells

Puja Sapra; Marc Damelin; John F. DiJoseph; Kimberly Marquette; Kenneth G. Geles; Jonathan Golas; Maureen Dougher; Bitha Narayanan; Andreas Giannakou; Kiran Khandke; Russell Dushin; Elana Ernstoff; Judy Lucas; Mauricio Leal; George Hu; Christopher J. O'Donnell; Lioudmila Tchistiakova; Robert T. Abraham; Hans-Peter Gerber

Antibody–drug conjugates (ADC) represent a promising therapeutic modality for the clinical management of cancer. We sought to develop a novel ADC that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells (TIC), which comprise the most aggressive cell population in the tumor. We optimized an anti-5T4 ADC (A1mcMMAF) by sulfydryl-based conjugation of the humanized A1 antibody to the tubulin inhibitor monomethylauristatin F (MMAF) via a maleimidocaproyl linker. A1mcMMAF exhibited potent in vivo antitumor activity in a variety of tumor models and induced long-term regressions for up to 100 days after the last dose. Strikingly, animals showed pathologic complete response in each model with doses as low as 3 mg antibody/kg dosed every 4 days. In a non–small cell lung cancer patient-derived xenograft model, in which 5T4 is preferentially expressed on the less differentiated tumor cells, A1mcMMAF treatment resulted in sustained tumor regressions and reduced TIC frequency. These results highlight the potential of ADCs that target the most aggressive cell populations within tumors, such as TICs. In exploratory safety studies, A1mcMMAF exhibited no overt toxicities when administered to cynomolgus monkeys at doses up to 10 mg antibody/kg/cycle × 2 and displayed a half-life of 5 days. The preclinical efficacy and safety data established a promising therapeutic index that supports clinical testing of A1mcMMAF. Mol Cancer Ther; 12(1); 38–47. ©2012 AACR.


Cancer Research | 2011

Delineation of a Cellular Hierarchy in Lung Cancer Reveals an Oncofetal Antigen Expressed on Tumor-Initiating Cells

Marc Damelin; Kenneth G. Geles; Ping Yuan; Michelle Baxter; Jonathon Golas; John F. DiJoseph; Maha Karnoub; Shuguang Huang; Veronica Diesl; Carmen Behrens; Sung E. Choe; Carol Rios; Latha Sridharan; Maureen Dougher; Arthur Kunz; Philip Ross Hamann; Deborah Evans; Douglas Armellino; Kiran Khandke; Kimberly Marquette; Lioudmila Tchistiakova; Erwin R. Boghaert; Robert T. Abraham; Ignacio I. Wistuba; Bin-Bing S. Zhou

Poorly differentiated tumors in non-small cell lung cancer (NSCLC) have been associated with shorter patient survival and shorter time to recurrence following treatment. Here, we integrate multiple experimental models with clinicopathologic analysis of patient tumors to delineate a cellular hierarchy in NSCLC. We show that the oncofetal protein 5T4 is expressed on tumor-initiating cells and associated with worse clinical outcome in NSCLC. Coexpression of 5T4 and factors involved in the epithelial-to-mesenchymal transition were observed in undifferentiated but not in differentiated tumor cells. Despite heterogeneous expression of 5T4 in NSCLC patient-derived xenografts, treatment with an anti-5T4 antibody-drug conjugate resulted in complete and sustained tumor regression. Thus, the aggressive growth of heterogeneous solid tumors can be blocked by therapeutic agents that target a subpopulation of cells near the top of the cellular hierarchy.


Journal of Immunology | 2006

Molecular characterization of rat leukocyte P-selectin glycoprotein ligand-1 and effect of its blockade: protection from ischemia-reperfusion injury in liver transplantation.

Sei-ichiro Tsuchihashi; Constantino Fondevila; Gray D. Shaw; Meike Lorenz; Kimberly Marquette; Susan Benard; Xiu-Da Shen; Bibo Ke; Ronald W. Busuttil; Jerzy W. Kupiec-Weglinski

P-selectin glycoprotein ligand-1 (PSGL-1) mediates the initial tethering of leukocytes to activated platelets and endothelium. We report molecular cloning and characterization of the rat PSGL-1 gene. A neutralizing Ab was generated, and its binding epitope was mapped to the N-terminal binding region of rat PSGL-1. We examined the effects of early PSGL-1 blockade in rat liver models of cold ischemia, followed by ex vivo reperfusion or transplantation (orthotopic liver transplantation (OLT)) using an anti-PSGL-1 Ab with diminished Fc-mediated effector function. In the ex vivo hepatic cold ischemia and reperfusion model, pretreatment with anti-PSGL-1 Ab improved portal venous flow, increased bile production, and decreased hepatocellular damage. Rat pretreatment with anti-PSGL-1 Ab prevented hepatic insult in a model of cold ischemia, followed by OLT, as assessed by 1) decreased hepatocellular damage (serum glutamic oxaloacetic transaminase/glutamic-pyruvic transaminase levels), and ameliorated histological features of ischemia/reperfusion injury, consistent with extended OLT survival; 2) reduced intrahepatic leukocyte infiltration, as evidenced by decreased expression of P-selectin, ED-1, CD3, and OX-62 cells; 3) inhibited expression of proinflammatory cytokine genes (TNF-α, IL-1β, IL-6, IFN-γ, and IL-2); and 4) prevented hepatic apoptosis accompanied by up-regulation of antiapoptotic Bcl-2/Bcl-xL protective genes. Thus, targeting PSGL-1 with a blocking Ab that has diminished Fc-mediated effector function is a simple and effective strategy that provides the rationale for novel therapeutic approaches to maximize the organ donor pool through the safer use of liver transplants despite prolonged periods of cold ischemia.


Journal of Pharmacology and Experimental Therapeutics | 2008

Interleukin-13 Neutralization by Two Distinct Receptor Blocking Mechanisms Reduces Immunoglobulin E Responses and Lung Inflammation in Cynomolgus Monkeys

Marion T. Kasaian; Xiang-Yang Tan; Macy Jin; Lori Fitz; Kimberly Marquette; Nancy Wood; Timothy A. Cook; Julie Lee; Angela Widom; Rita Agostinelli; Andrea Bree; Franklin J. Schlerman; Stephane Olland; Michael Wadanoli; Joseph P. Sypek; Davinder Gill; Samuel J. Goldman; Lioudmila Tchistiakova

Interleukin (IL)-13 is a key cytokine driving allergic and asthmatic responses and contributes to airway inflammation in cynomolgus monkeys after segmental challenge with Ascaris suum antigen. IL-13 bioactivity is mediated by a heterodimeric receptor (IL-13Rα1/IL-4Rα) and can be inhibited in vitro by targeting IL-13 interaction with either chain. However, in cytokine systems, in vitro neutralization activity may not always predict inhibitory function in vivo. To address the efficacy of two different IL-13 neutralization mechanisms in a primate model of atopic disease, two humanized monoclonal antibodies to IL-13 were generated, with highly homologous properties, differing in epitope recognition. Ab01 blocks IL-13 interaction with IL-4Rα, and Ab02 blocks IL-13 interaction with IL-13Rα1. In a cynomolgus monkey model of IgE responses to A. suum antigen, both Ab01 and Ab02 effectively reduced serum titers of Ascaris-specific IgE and diminished ex vivo Ascaris-triggered basophil histamine release, assayed 8 weeks after a single administration of antibody. The two antibodies also produced comparable reductions in pulmonary inflammation after lung segmental challenge with Ascaris antigen. Increased serum levels of IL-13, lacking demonstrable biological activity, were seen postchallenge in animals given either anti-IL-13 antibody but not in control animals given human IgG of irrelevant specificity. These findings demonstrate a potent effect of IL-13 neutralization on IgE-mediated atopic responses in a primate system and show that IL-13 can be efficiently neutralized by targeting either the IL-4Rα-binding epitope or the IL-13Rα1-binding epitope.


Journal of Immunology | 2011

IL-13 Antibodies Influence IL-13 Clearance in Humans by Modulating Scavenger Activity of IL-13Rα2

Marion Kasaian; Donald Raible; Kimberly Marquette; Timothy A. Cook; Simon Zhou; Xiang-Yang Tan; Lioudmila Tchistiakova

Human studies using Abs to two different, nonoverlapping epitopes of IL-13 suggested that epitope specificity can have a clinically significant impact on clearance of IL-13. We propose that Ab modulation of IL-13 interaction with IL-13Rα2 underlies this effect. Two Abs were administered to healthy subjects and mild asthmatics in separate dose-ranging studies and allergen-challenge studies. IMA-638 allows IL-13 interaction with IL-13Rα1 or IL-13Rα2 but blocks recruitment of IL-4Rα to the IL-13/IL-13Rα1 complex, whereas IMA-026 competes with IL-13 interaction with IL-13Rα1 and IL-13Rα2. We found ∼10-fold higher circulating titer of captured IL-13 in subjects treated with IMA-026 compared with those administered IMA-638. To understand how this difference could be related to epitope, we asked whether either Ab affects IL-13 internalization through cell surface IL-13Rα2. Humans inducibly express cell surface IL-13Rα2 but lack the soluble form that regulates IL-13 responses in mice. Cells with high IL-13Rα2 expression rapidly and efficiently depleted extracellular IL-13, and this activity persisted in the presence of IMA-638 but not IMA-026. The potency and efficiency of this clearance pathway suggest that cell surface IL-13Rα2 acts as a scavenger for IL-13. These findings could have important implications for the design and characterization of IL-13 antagonists.


American Journal of Respiratory Cell and Molecular Biology | 2013

An IL-4/IL-13 Dual Antagonist Reduces Lung Inflammation, Airway Hyperresponsiveness, and IgE Production in Mice

Marion T. Kasaian; Kimberly Marquette; Susan Fish; Charlene DeClercq; Rita Agostinelli; Timothy A. Cook; Agnes Brennan; Julie Lee; Lori Fitz; Jonathan Brooks; Yulia Vugmeyster; Cara Williams; Alan Lofquist; Lioudmila Tchistiakova

IL-4 and IL-13 comprise promising targets for therapeutic interventions in asthma and other Th2-associated diseases, but agents targeting either IL-4 or IL-13 alone have shown limited efficacy in human clinical studies. Because these cytokines may involve redundant function, dual targeting holds promise for achieving greater efficacy. We describe a bifunctional therapeutic targeting IL-4 and IL-13, developed by a combination of specific binding domains. IL-4-targeted and IL-13-targeted single chain variable fragments were joined in an optimal configuration, using appropriate linker regions on a novel protein scaffold. The bifunctional IL-4/IL-13 antagonist displayed high affinity for both cytokines. It was a potent and efficient neutralizer of both murine IL-4 and murine IL-13 bioactivity in cytokine-responsive Ba/F3 cells, and exhibited a half-life of approximately 4.7 days in mice. In a murine model of ovalbumin-induced ear swelling, the bifunctional molecule blocked both the IL-4/IL-13-dependent early-phase response and the IL-4-dependent late-phase response. In the ovalbumin-induced lung inflammation model, the bifunctional IL-4/IL-13 antagonist reduced the IL-4-dependent rise in serum IgE titers, and reduced IL-13-dependent airway hyperresponsiveness, lung inflammation, mucin gene expression, and serum chitinase responses. Taken together, these findings demonstrate the effective dual blockade of IL-4 and IL-13 with a single agent, which resulted in the modulation of a more extensive range of endpoints than could be achieved by targeting either cytokine alone.


ACS Medicinal Chemistry Letters | 2016

Optimization of Tubulysin Antibody–Drug Conjugates: A Case Study in Addressing ADC Metabolism

L. Nathan Tumey; Carolyn A. Leverett; Beth Cooper Vetelino; Fengping Li; Brian Rago; Xiaogang Han; Frank Loganzo; Sylvia Musto; Guoyun Bai; Sai Chetan K. Sukuru; Edmund I. Graziani; Sujiet Puthenveetil; Jeffrey M. Casavant; Anokha S. Ratnayake; Kimberly Marquette; Sarah Hudson; Venkata Ramana Doppalapudi; Joseph Stock; Lioudmila Tchistiakova; Andrew J. Bessire; Tracey Clark; Judy Lucas; Christine Hosselet; Christopher J. O’Donnell; Chakrapani Subramanyam

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody–drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays. Second, site-specific conjugation was employed in order to design ADCs with reduced metabolic liabilities. Using the later approach, we were able to identify a conjugate at the 334C position of the heavy chain that resulted in an ADC with considerably reduced metabolism and improved efficacy. The examples discussed herein provide one of the clearest demonstrations to-date that site of conjugation can play a critical role in addressing metabolic and PK liabilities of an ADC. Moreover, a clear correlation was identified between the hydrophobicity of an ADC and its susceptibility to metabolic enzymes. Importantly, this study demonstrates that traditional medicinal chemistry strategies can be effectively applied to ADC programs.


Immunology | 2014

Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice.

Marion Kasaian; Karen Page; Susan Fish; Agnes Brennan; Timothy A. Cook; Karen Moreira; Melvin Zhang; Michael I. Jesson; Kimberly Marquette; Rita Agostinelli; Julie Lee; Cara Williams; Lioudmila Tchistiakova; Paresh Thakker

Interleukin‐4 (IL‐4) and IL‐13 are critical drivers of immune activation and inflammation in ulcerative colitis, asthma and other diseases. Because these cytokines may have redundant function, dual targeting holds promise for achieving greater efficacy. We have recently described a bifunctional therapeutic targeting IL‐4 and IL‐13 developed on a novel protein scaffold, generated by combining specific binding domains in an optimal configuration using appropriate linker regions. In the current study, the bifunctional IL‐4/IL‐13 antagonist was evaluated in the murine oxazolone‐induced colitis model, which produces disease with features of ulcerative colitis. The bifunctional IL‐4/IL‐13 antagonist reduced body weight loss throughout the 7‐day course of the model, and ameliorated the increased colon weight and decreased colon length that accompany disease. Colon tissue gene expression was modulated in accordance with the treatment effect. Concentrations of serum amyloid P were elevated in proportion to disease severity, making it an effective biomarker. Serum concentrations of the bifunctional IL‐4/IL‐13 antagonist were inversely proportional to disease severity, colon tissue expression of pro‐inflammatory genes, and serum amyloid P concentration. Taken together, these results define a panel of biomarkers signifying engagement of the IL‐4/IL‐13 pathway, confirm the T helper type 2 nature of disease in this model, and demonstrate the effectiveness of dual cytokine blockade.


Molecular Cancer Therapeutics | 2015

Novel Anti-TM4SF1 Antibody–Drug Conjugates with Activity against Tumor Cells and Tumor Vasculature

Alberto Visintin; Kelly M. Knowlton; Edyta Tyminski; Chi-Iou Lin; Xiang Zheng; Kimberly Marquette; Sadhana Jain; Lioudmila Tchistiakova; Dan Li; Christopher J. O'Donnell; Andreas Maderna; Xianjun Cao; Robert Dunn; William B. Snyder; Anson K. Abraham; Mauricio Leal; Shoba Shetty; Anthony Barry; Leigh Zawel; Anthony J. Coyle; Harold F. Dvorak; Shou-Ching Jaminet

Antibody–drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels. TM4SF1 is internalized upon interaction with antibodies. We hypothesized that an ADC against TM4SF1 would inhibit cancer growth directly by killing cancer cells and indirectly by attacking the tumor vasculature. We generated a humanized anti-human TM4SF1 monoclonal antibody, v1.10, and armed it with an auristatin cytotoxic agent LP2 (chemical name mc-3377). v1.10-LP2 selectively killed cultured human tumor cell lines and human endothelial cells that express TM4SF1. Acting as a single agent, v1.10-LP2 induced complete regression of several TM4SF1-expressing tumor xenografts in nude mice, including non–small cell lung cancer and pancreas, prostate, and colon cancers. As v1.10 did not react with mouse TM4SF1, it could not target the mouse tumor vasculature. Therefore, we generated a surrogate anti-mouse TM4SF1 antibody, 2A7A, and conjugated it to LP2. At 3 mpk, 2A7A-LP2 regressed several tumor xenografts without noticeable toxicity. Combination therapy with v1.10-LP2 and 2A7A-LP2 together was more effective than either ADC alone. These data provide proof-of-concept that TM4SF1-targeting ADCs have potential as anticancer agents with dual action against tumor cells and the tumor vasculature. Such agents could offer exceptional therapeutic value and warrant further investigation. Mol Cancer Ther; 14(8); 1868–76. ©2015 AACR.


PLOS ONE | 2013

Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

Mylene Perreault; Guo Feng; Sarah Will; Tiffany Gareski; David Kubasiak; Kimberly Marquette; Yulia Vugmeyster; Thaddeus J. Unger; Ariful Qadri; Seung Hahm; Ying Sun; Cynthia M. Rohde; Raphael Zwijnenberg; Janet E. Paulsen; Ruth E. Gimeno

Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.

Collaboration


Dive into the Kimberly Marquette's collaboration.

Researchain Logo
Decentralizing Knowledge