Kimberly S. Schluns
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kimberly S. Schluns.
Nature Immunology | 2000
Kimberly S. Schluns; William C. Kieper; Stephen C. Jameson; Leo Lefrançois
The naïve and memory T lymphocyte pools are maintained through poorly understood homeostatic mechanisms that may include signaling via cytokine receptors. We show that interleukin-7 (IL-7) plays multiple roles in regulating homeostasis of CD8+ T cells. We found that IL-7 was required for homeostatic expansion of naïve CD8+ and CD4+ T cells in lymphopenic hosts and for CD8+ T cell survival in normal hosts. In contrast, IL- 7 was not necessary for growth of CD8+ T cells in response to a virus infection but was critical for generating T cell memory. Up-regulation of Bcl-2 in the absence of IL-7 signaling was impaired after activation in vivo. Homeostatic proliferation of memory cells was also partially dependent on IL-7. These results point to IL-7 as a pivotal cytokine in T cell homeostasis.
Nature | 2007
Roza Nurieva; Xuexian O. Yang; Gustavo J. Martinez; Yongliang Zhang; Athanasia D. Panopoulos; Li Ma; Kimberly S. Schluns; Qiang Tian; Stephanie S. Watowich; Anton M. Jetten; Chen Dong
After activation, CD4+ helper T (TH) cells differentiate into distinct effector subsets that are characterized by their unique cytokine expression and immunoregulatory function. During this differentiation, TH1 and TH2 cells produce interferon-γ and interleukin (IL)-4, respectively, as autocrine factors necessary for selective lineage commitment. A distinct TH subset, termed THIL-17, TH17 or inflammatory TH (THi), has been recently identified as a distinct TH lineage mediating tissue inflammation. TH17 differentiation is initiated by transforming growth factor-β and IL-6 (refs 5–7) and reinforced by IL-23 (ref. 8), in which signal transduction and activators of transcription (STAT)3 and retinoic acid receptor-related orphan receptor (ROR)-γ mediate the lineage specification. TH17 cells produce IL-17, IL-17F and IL-22, all of which regulate inflammatory responses by tissue cells but have no importance in TH17 differentiation. Here we show that IL-21 is another cytokine highly expressed by mouse TH17 cells. IL-21 is induced by IL-6 in activated T cells, a process that is dependent on STAT3 but not ROR-γ. IL-21 potently induces TH17 differentiation and suppresses Foxp3 expression, which requires STAT3 and ROR-γ, which is encoded by Rorc. IL-21 deficiency impairs the generation of TH17 cells and results in protection against experimental autoimmune encephalomyelitis. IL-21 is therefore an autocrine cytokine that is sufficient and necessary for TH17 differentiation, and serves as a target for treating inflammatory diseases.
Immunity | 2008
Xuexian O. Yang; Bhanu P. Pappu; Roza Nurieva; Askar M. Akimzhanov; Hong Soon Kang; Yeonseok Chung; Li Ma; Bhavin Shah; Athanasia D. Panopoulos; Kimberly S. Schluns; Stephanie S. Watowich; Qiang Tian; Anton M. Jetten; Chen Dong
T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
Immunity | 2008
Xuexian O. Yang; Roza Nurieva; Gustavo J. Martinez; Hong Soon Kang; Yeonseok Chung; Bhanu P. Pappu; Bhavin Shah; Seon Hee Chang; Kimberly S. Schluns; Stephanie S. Watowich; Xin-Hua Feng; Anton M. Jetten; Chen Dong
Regulatory T (Treg) and T helper 17 (Th17) cells were recently proposed to be reciprocally regulated during differentiation. To understand the underlying mechanisms, we utilized a Th17 reporter mouse with a red fluorescent protein (RFP) sequence inserted into the interleukin-17F (IL-17F) gene. Using IL-17F-RFP together with a Foxp3 reporter, we found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses. Although TGF-beta receptor I signaling was required for both Foxp3 and IL-17 induction, SMAD4 was only involved in Foxp3 upregulation. Foxp3 inhibited Th17 differentiation by antagonizing the function of the transcription factors RORgammat and ROR*. In contrast, IL-6 overcame this suppressive effect of Foxp3 and, together with IL-1, induced genetic reprogramming in Foxp3(+) Treg cells. STAT3 regulated Foxp3 downregulation, whereas STAT3, RORgamma, and ROR* were required for IL-17 expression in Treg cells. Our data demonstrate molecular antagonism and plasticity of Treg and Th17 cell programs.
Journal of Experimental Medicine | 2008
Xuexian O. Yang; Seon Hee Chang; Heon Park; Roza Nurieva; Bhavin Shah; Luis Acero; Yi-Hong Wang; Kimberly S. Schluns; Russell R. Broaddus; Zhou Zhu; Chen Dong
Although interleukin (IL) 17 has been extensively characterized, the function of IL-17F, which has an expression pattern regulated similarly to IL-17, is poorly understood. We show that like IL-17, IL-17F regulates proinflammatory gene expression in vitro, and this requires IL-17 receptor A, tumor necrosis factor receptor–associated factor 6, and Act1. In vivo, overexpression of IL-17F in lung epithelium led to infiltration of lymphocytes and macrophages and mucus hyperplasia, similar to observations made in IL-17 transgenic mice. To further understand the function of IL-17F, we generated and analyzed mice deficient in IL-17F or IL-17. IL-17, but not IL-17F, was required for the initiation of experimental autoimmune encephalomyelitis. Mice deficient in IL-17F, but not IL-17, had defective airway neutrophilia in response to allergen challenge. Moreover, in an asthma model, although IL-17 deficiency reduced T helper type 2 responses, IL-17F–deficient mice displayed enhanced type 2 cytokine production and eosinophil function. In addition, IL-17F deficiency resulted in reduced colitis caused by dextran sulfate sodium, whereas IL-17 knockout mice developed more severe disease. Our results thus demonstrate that IL-17F is an important regulator of inflammatory responses that seems to function differently than IL-17 in immune responses and diseases.
Journal of Immunology | 2002
Kimberly S. Schluns; Kristina Williams; Averil Ma; Xin X. Zheng; Leo Lefrançois
IL-15 and IL-15Rα are required for generation of memory-phenotype CD8 T cells in unimmunized mice. However, the role of IL-15 in primary expansion and generation of Ag-specific memory CD8 T cells in vivo has not been investigated. We characterized the CD8 T cell response against vesicular stomatitis virus (VSV) in IL-15−/− and IL-15Rα−/− mice. Surprisingly, IL-15 was required for primary expansion of VSV-specific CD8 T cells. The generation of VSV-specific memory CD8 T cells was also impaired without IL-15 signaling, and this defect correlated with a decrease in memory CD8 T cell turnover. Despite minimal proliferation without IL-15, a subset of memory cells survived long-term. IL-15Rα expression was low on naive CD8 T cells, up-regulated on Ag-specific effector cells, and sustained on memory cells. Thus, IL-15 was important for the generation and the subsequent maintenance of antiviral memory CD8 T cells.
Nature Medicine | 2013
Yared Hailemichael; Zhimin Dai; Nina Jaffarzad; Yang Ye; Miguel A. Medina; Xue Fei Huang; Stephanie Dorta-Estremera; Nathaniel R. Greeley; Giovanni Nitti; Weiyi Peng; Chengwen Liu; Yanyan Lou; Zhiqiang Wang; Wencai Ma; Brian Rabinovich; Kimberly S. Schluns; Richard Eric Davis; Patrick Hwu; Willem W. Overwijk
To understand why cancer vaccine–induced T cells often do not eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freunds adjuvant (peptide/IFA), which is commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8+ T cells, which accumulated not in tumors but rather at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, interferon-γ (IFN-γ)- and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of CD40-specific antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination-site sequestration. A nonpersisting vaccine formulation shifted T cell localization toward tumors, inducing superior antitumor activity while reducing systemic T cell dysfunction and promoting memory formation. These data show that persisting vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Journal of Immunology | 2004
Michelle M. Sandau; Kimberly S. Schluns; Leo Lefrançois; Stephen C. Jameson
IL-15 is critical for generation of multiple lymphoid subsets. Recent data have demonstrated a unique aspect of responses to IL-15, in that cells bearing the IL-15Rα chain can bind soluble IL-15 and “transpresent” the cytokine to other cells, allowing the latter to respond to IL-15. However, it is unclear whether IL-15 is normally secreted and then becomes bound to surface IL-15Rα on bystander cells, or whether transpresentation is mediated by the same cells which synthesize IL-15. Using mixed bone marrow chimeric mice, we present evidence for the latter model, showing that development of NK cells and memory phenotype CD8 T cells necessitates that both IL-15 and IL-15Rα be expressed by the same population of cells. These data argue that soluble forms of IL-15 are irrelevant for physiological responses to this cytokine, and the implications of this finding are discussed.
Immunology Letters | 2010
Spencer W. Stonier; Kimberly S. Schluns
Interleukin (IL)-15 is a cytokine that acts on a wide range of cell types but is most crucial for the development, homeostasis, and function of a specific group of immune cells that includes CD8 T cells, NK cells, NKT cells, and CD8 alpha alpha intraepithelial lymphocytes. IL-15 signals are transmitted through the IL-2/15R beta and common gamma (gamma C) chains; however, it is the delivery of IL-15 to these signaling components that is quite unique. As opposed to other cytokines that are secreted, IL-15 primarily exists bound to the high affinity IL-15R alpha. When IL-15/IL-15R alpha complexes are shuttled to the cell surface, they can stimulate opposing cells through the beta/gamma C receptor complex. This novel mechanism of IL-15 delivery has been called trans-presentation. This review discusses how the theory of trans-presentation came to be, evidence that it is the major mechanism of action, the current understanding of the cell types thought to mediate trans-presentation, and possible alternatives for IL-15 delivery.
Journal of Immunology | 2002
Warren N. D'Souza; Kimberly S. Schluns; David Masopust; Leo Lefrançois
IL-2 is a cytokine produced primarily by activated T cells and is thought to be the quintessential T cell growth factor. The precise role of IL-2 in the regulation of CD8 T cell responses to foreign Ag in vivo however remains enigmatic. Using an adoptive transfer system with IL-2- or IL-2R-deficient TCR transgenic CD8 T cells and MHC class I tetramers, we demonstrated that the expansion of antiviral CD8 T cells in secondary lymphoid tissues was IL-2 independent, whereas IL-2 played a more significant role in supporting the continued expansion of these cells within nonlymphoid tissues. Paradoxically, autocrine IL-2 negatively regulated the overall magnitude of the CD8 T cell response in nonlymphoid tissues via a Fas-independent mechanism. Furthermore, autocrine IL-2 did not regulate the contraction or memory phase of the response. These experiments identified a novel role for IL-2 in regulation of antiviral CD8 T cell responses and homeostasis in nonlymphoid tissues.