Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimberly Stegmaier is active.

Publication


Featured researches published by Kimberly Stegmaier.


Nature | 2013

Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Michael S. Lawrence; Petar Stojanov; Paz Polak; Gregory V. Kryukov; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Chip Stewart; Craig H. Mermel; Steven A. Roberts; Adam Kiezun; Peter S. Hammerman; Aaron McKenna; Yotam Drier; Lihua Zou; Alex H. Ramos; Trevor J. Pugh; Nicolas Stransky; Elena Helman; Jaegil Kim; Carrie Sougnez; Lauren Ambrogio; Elizabeth Nickerson; Erica Shefler; Maria L. Cortes; Daniel Auclair; Gordon Saksena; Douglas Voet; Michael S. Noble; Daniel DiCara

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Cancer Discovery | 2013

Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition

Alexandre Puissant; Stacey M. Frumm; Gabriela Alexe; Christopher F. Bassil; Jun Qi; Yvan Chanthery; Erin A. Nekritz; Rhamy Zeid; William Clay Gustafson; Patricia Greninger; Matthew J Garnett; Ultan McDermott; Cyril H. Benes; Andrew L. Kung; William A. Weiss; James E. Bradner; Kimberly Stegmaier

Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bromodomain inhibitors in patients with neuroblastoma.


Nature Genetics | 2004

Gene expression–based high-throughput screening(GE-HTS) and application to leukemia differentiation

Kimberly Stegmaier; Kenneth N. Ross; Sierra A Colavito; Shawn O'Malley; Brent R. Stockwell; Todd R. Golub

Chemical genomics involves generating large collections of small molecules and using them to modulate cellular states. Despite recent progress in the systematic synthesis of structurally diverse compounds, their use in screens of cellular circuitry is still an ad hoc process. Here, we outline a general, efficient approach called gene expression–based high-throughput screening (GE-HTS) in which a gene expression signature is used as a surrogate for cellular states, and we describe its application in a particular setting: the identification of compounds that induce the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we identified 8 that reliably induced the differentiation signature and, furthermore, yielded functional evidence of bona fide differentiation. The results indicate that GE-HTS may be a powerful, general approach for chemical screening.


Scientific Data | 2014

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies

Glenn S. Cowley; Barbara A. Weir; Francisca Vazquez; Pablo Tamayo; Justine A. Scott; Scott F. Rusin; Alexandra East-Seletsky; Levi D. Ali; William F.J. Gerath; Sarah E. Pantel; Patrick H. Lizotte; Guozhi Jiang; Jessica Hsiao; Aviad Tsherniak; Elizabeth Dwinell; Simon Aoyama; Michael Okamoto; William F. Harrington; Ellen Gelfand; Thomas M. Green; Mark J. Tomko; Shuba Gopal; Terrence C. Wong; Hubo Li; Sara Howell; Nicolas Stransky; Ted Liefeld; Dongkeun Jang; Jonathan Bistline; Barbara Hill Meyers

Using a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in 216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on 11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrichment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing. All the cell lines were screened using standardized conditions to best assess differential genetic dependencies across cell lines. When combined with genomic characterization of these cell lines, this dataset facilitates the linkage of genetic dependencies with specific cellular contexts (e.g., gene mutations or cell lineage). To enable such comparisons, we developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features.


PLOS ONE | 2010

Characterization of notch1 antibodies that inhibit signaling of both normal and mutated notch1 receptors

Miguel Aste-Amezaga; Ningyan Zhang; Janet Lineberger; Beth Anne Arnold; Timothy J. Toner; Mingcheng Gu; Lingyi Huang; Salvatore Vitelli; Kim Vo; Peter Haytko; Jing Zhang Zhao; Frederic Baleydier; Sarah L'heureux; Hongfang Wang; Wendy R. Gordon; Elizabeth Thoryk; Marie Blanke Andrawes; Kittichoat Tiyanont; Kimberly Stegmaier; Giovanni Roti; Kenneth N. Ross; Laura L. Franlin; Hui Wang; Fubao Wang; Michael Chastain; Andrew J. Bett; Laurent P. Audoly; Stephen C. Blacklow; Hans E. Huber

Background Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target. Principal Findings Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC50 values as low as 5±3 nM and 0.13±0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR “class I” point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare “class II” or “class III” mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors. Conclusions/Significance Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.


Cancer Discovery | 2016

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting

Andrew J. Aguirre; Robin M. Meyers; Barbara A. Weir; Francisca Vazquez; Cheng-Zhong Zhang; Uri Ben-David; April Cook; Gavin Ha; William F. Harrington; Mihir Doshi; Maria Kost-Alimova; Stanley Gill; Han Xu; Levi D. Ali; Guozhi Jiang; Sasha Pantel; Yenarae Lee; Amy Goodale; Andrew D. Cherniack; Coyin Oh; Gregory V. Kryukov; Glenn S. Cowley; Levi A. Garraway; Kimberly Stegmaier; Charles W. M. Roberts; Todd R. Golub; Matthew Meyerson; David E. Root; Aviad Tsherniak; William C. Hahn

UNLABELLED The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.


Cancer Discovery | 2014

The Genomic Landscape of Pediatric Ewing Sarcoma

Brian D. Crompton; Chip Stewart; Amaro Taylor-Weiner; Gabriela Alexe; Kurek Kc; Monica L. Calicchio; Adam Kiezun; Scott L. Carter; Sachet A. Shukla; Swapnil Mehta; Aaron R. Thorner; de Torres C; Cinzia Lavarino; Mariona Suñol; Aaron McKenna; Andrey Sivachenko; Kristian Cibulskis; Michael S. Lawrence; Petar Stojanov; Mara Rosenberg; Lauren Ambrogio; Daniel Auclair; Sara Seepo; Brendan Blumenstiel; Matthew DeFelice; Ivan Imaz-Rosshandler; Miguel Rivera; Carlos Rodriguez-Galindo; Fleming; Todd R. Golub

UNLABELLED Pediatric Ewing sarcoma is characterized by the expression of chimeric fusions of EWS and ETS family transcription factors, representing a paradigm for studying cancers driven by transcription factor rearrangements. In this study, we describe the somatic landscape of pediatric Ewing sarcoma. These tumors are among the most genetically normal cancers characterized to date, with only EWS-ETS rearrangements identified in the majority of tumors. STAG2 loss, however, is present in more than 15% of Ewing sarcoma tumors; occurs by point mutation, rearrangement, and likely nongenetic mechanisms; and is associated with disease dissemination. Perhaps the most striking finding is the paucity of mutations in immediately targetable signal transduction pathways, highlighting the need for new therapeutic approaches to target EWS-ETS fusions in this disease. SIGNIFICANCE We performed next-generation sequencing of Ewing sarcoma, a pediatric cancer involving bone, characterized by expression of EWS-ETS fusions. We found remarkably few mutations. However, we discovered that loss of STAG2 expression occurs in 15% of tumors and is associated with metastatic disease, suggesting a potential genetic vulnerability in Ewing sarcoma.


Cancer Cell | 2009

Proteomic and genetic approaches identify Syk as an AML target.

Cynthia K. Hahn; Jacob E. Berchuck; Kenneth N. Ross; Rose M. Kakoza; Karl R. Clauser; Anna C. Schinzel; Linda Ross; Ilene Galinsky; Tina N. Davis; Serena J. Silver; David E. Root; Richard Stone; Daniel J. DeAngelo; Martin Carroll; William C. Hahn; Steven A. Carr; Todd R. Golub; Andrew L. Kung; Kimberly Stegmaier

Cell-based screening can facilitate the rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires the identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target, anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation

Cynthia K. Hahn; Kenneth N. Ross; Ian M. Warrington; Ralph Mazitschek; Cindy M. Kanegai; Renee D. Wright; Andrew L. Kung; Todd R. Golub; Kimberly Stegmaier

The discovery of new small molecules and their testing in rational combination poses an ongoing problem for rare diseases, in particular, for pediatric cancers such as neuroblastoma. Despite maximal cytotoxic therapy with double autologous stem cell transplantation, outcome remains poor for children with high-stage disease. Because differentiation is aberrant in this malignancy, compounds that modulate transcription, such as histone deacetylase (HDAC) inhibitors, are of particular interest. However, as single agents, HDAC inhibitors have had limited efficacy. In the present study, we use an HDAC inhibitor as an enhancer to screen a small-molecule library for compounds inducing neuroblastoma maturation. To quantify differentiation, we use an enabling gene expression-based screening strategy. The top hit identified in the screen was all-trans-retinoic acid. Secondary assays confirmed greater neuroblastoma differentiation with the combination of an HDAC inhibitor and a retinoid versus either alone. Furthermore, effects of combination therapy were synergistic with respect to inhibition of cellular viability and induction of apoptosis. In a xenograft model of neuroblastoma, animals treated with combination therapy had the longest survival. This work suggests that testing of an HDAC inhibitor and retinoid in combination is warranted for children with neuroblastoma and demonstrates the success of a signature-based screening approach to prioritize compound combinations for testing in rare diseases.


Cancer Cell | 2016

The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo-Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.

Collaboration


Dive into the Kimberly Stegmaier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Kung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giovanni Roti

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge