Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimiko Inoue is active.

Publication


Featured researches published by Kimiko Inoue.


Science | 2010

Impeding Xist Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer

Kimiko Inoue; Takashi Kohda; Michihiko Sugimoto; Takashi Sado; Narumi Ogonuki; Shogo Matoba; Hirosuke Shiura; Rieko Ikeda; Keiji Mochida; Takashi Fujii; Ken Sawai; Arie P. Otte; X.C. Tian; Xiangzhong Yang; Fumitoshi Ishino; Kuniya Abe; Atsuo Ogura

Cloning Futures Cloning mammals by somatic cell nuclear transfer is a technique with many potential applications in regenerative medicine, agriculture, and pharmaceutics; however, it is inefficient because of the incidence of aberrant genomic reprogramming. Inoue et al. (p. 496, published online 16 September) found that the gene product of Xist, which normally inactivates one of the two X chromosomes in females, was unexpectedly expressed ectopically from active X chromosomes in cloned mice. When Xist was deleted from the mice, gene expression returned to normal and the efficiency of somatic cell nuclear transfer increased about ninefold, offering promise for future nuclear transfer technology. Efficiency of mouse nuclear transfer was improved by correcting aberrant gene expression on the active X chromosome. Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.


Philosophical Transactions of the Royal Society B | 2012

Recent advancements in cloning by somatic cell nuclear transfer

Atsuo Ogura; Kimiko Inoue; Teruhiko Wakayama

Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.


Proceedings of the National Academy of Sciences of the United States of America | 2011

RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos

Shogo Matoba; Kimiko Inoue; Takashi Kohda; Michihiko Sugimoto; Eiji Mizutani; Narumi Ogonuki; Toshinobu Nakamura; Kuniya Abe; Toru Nakano; Fumitoshi Ishino; Atsuo Ogura

Cloning mammals by somatic cell nuclear transfer (SCNT) is highly inefficient. Most SCNT-generated embryos die after implantation because of unidentified, complex epigenetic errors in the process of postimplantation embryonic development. Here we identify the most upstream level of dysfunction leading to impaired development of clones by using RNAi against Xist, a gene responsible for X chromosome inactivation (XCI). A prior injection of Xist-specific siRNA into reconstructed oocytes efficiently corrected SCNT-specific aberrant Xist expression at the morula stage, but failed to do so thereafter at the blastocyst stage. However, we found that shortly after implantation, this aberrant XCI status in cloned embryos had been corrected autonomously in both embryonic and extraembryonic tissues, probably through a newly established XCI control for postimplantation embryos. Embryo transfer experiments revealed that siRNA-treated embryos showed 10 times higher survival than controls as early as embryonic day 5.5 and this high survival persisted until term, resulting in a remarkable improvement in cloning efficiency (12% vs. 1% in controls). Importantly, unlike control clones, these Xist-siRNA clones at birth showed only a limited dysregulation of their gene expression, indicating that correction of Xist expression in preimplantation embryos had a long-term effect on their postnatal normality. Thus, contrary to the general assumption, our results suggest that the fate of cloned embryos is determined almost exclusively before implantation by their XCI status. Furthermore, our strategy provides a promising breakthrough for mammalian SCNT cloning, because RNAi treatment of oocytes is readily applicable to most mammal species.


Journal of Biological Chemistry | 1997

The Interorganellar Interaction between Distinct Human Mitochondria with Deletion Mutant mtDNA from a Patient with Mitochondrial Disease and with HeLa mtDNA

Daisaku Takai; Kimiko Inoue; Yu-ichi Goto; Ikuya Nonaka; Jun-Ichi Hayashi

For the examination of possible intermitochondrial interaction of human mitochondria from different cells, cybrids were constructed by introducing HeLa mitochondria into cells with respiration-deficient (ρ−) mitochondria. Respiration deficiency was due to the predominance of mutant mtDNA with a 5,196-base pair deletion including five tRNA genes (ΔmtDNA5196). The HeLa mtDNA and ΔmtDNA5196 encoded chloramphenicol-resistant (CAPr) and chloramphenicol-sensitive (CAPs) 16 S rRNA, respectively. The first evidence for the interaction was that polypeptides exclusively encoded by ΔmtDNA5196 were translated on the introduction of HeLa mitochondria, suggesting supplementation of the missing tRNAs by ρ− mitochondria from HeLa mitochondria. Second, the exchange of mitochondrial rRNAs was observed; even in the presence of CAP, CAPs ΔmtDNA5196-specific polypeptides as well as those encoded by CAPr HeLa mtDNA were translated in the cybrids. These phenomena can be explained assuming that the translation in ρ− mitochondria was restored by tRNAs and CAPr 16 S rRNA supplied from HeLa mitochondria, unambiguously indicating interorganellar interaction. These observations introduce a new concept of the dynamics of the mitochondrial genetic system and help in understanding the relationship among mtDNA mutations and expression of human mitochondrial diseases and aging.


Neurobiology of Aging | 2015

Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson's disease

Tomoko Oeda; Atsushi Umemura; Yuko Mori; Satoshi Tomita; Masayuki Kohsaka; Kwiyoung Park; Kimiko Inoue; Harutoshi Fujimura; Hiroshi Hasegawa; Hiroshi Sugiyama; Hideyuki Sawada

Homozygous mutations of the glucocerebrosidase gene (GBA) cause Gaucher disease (GD), and heterozygous mutations of GBA are a major risk factor for Parkinsons disease (PD). This study examined the impact of GBA mutations on the longitudinal clinical course of PD patients by retrospective cohort design. GBA-coding regions were fully sequenced in 215 PD patients and GD-associated GBA mutations were identified in 19 (8.8%) PD patients. In a retrospective cohort study, time to develop dementia, psychosis, wearing-off, and dyskinesia were examined. Survival time analysis followed a maximum 12-year observation (median 6.0 years), revealing that PD patients with GD-associated mutations developed dementia and psychosis significantly earlier than those without mutations (p < 0.001 and p = 0.017, respectively). Adjusted hazard ratios of GBA mutations were 8.3 for dementia (p < 0.001) and 3.1 for psychosis (p = 0.002). No statistically significant differences were observed for wearing-off and dyskinesia between the groups. N-isopropyl-p[(123)I] iodoamphetamine single-photon emission tomography pixel-by-pixel analysis revealed that regional cerebral blood flow was reduced in the bilateral parietal cortex, including the precuneus of GD-associated mutant PD patients, compared with matched PD controls without mutations.


PLOS ONE | 2009

A high-speed congenic strategy using first-wave male germ cells.

Narumi Ogonuki; Kimiko Inoue; Michiko Hirose; Ikuo Miura; Keiji Mochida; Takahiro Sato; Nathan Mise; Kazuyuki Mekada; Atsushi Yoshiki; Kuniya Abe; Hiroki Kurihara; Shigeharu Wakana; Atsuo Ogura

Background In laboratory mice and rats, congenic breeding is essential for analyzing the genes of interest on specific genetic backgrounds and for analyzing quantitative trait loci. However, in theory it takes about 3–4 years to achieve a strain carrying about 99% of the recipient genome at the tenth backcrossing (N10). Even with marker-assisted selection, the so-called ‘speed congenic strategy’, it takes more than a year at N4 or N5. Methodology/Principal Findings Here we describe a new high-speed congenic system using round spermatids retrieved from immature males (22–25 days of age). We applied the technique to three genetically modified strains of mice: transgenic (TG), knockin (KI) and N-ethyl-N-nitrosourea (ENU)-induced mutants. The donor mice had mixed genetic backgrounds of C57BL/6 (B6)∶DBA/2 or B6∶129 strains. At each generation, males used for backcrossing were selected based on polymorphic marker analysis and their round spermatids were injected into B6 strain oocytes. Backcrossing was repeated until N4 or N5. For the TG and ENU-mutant strains, the N5 generation was achieved on days 188 and 190 and the proportion of B6-homozygous loci was 100% (74 markers) and 97.7% (172/176 markers), respectively. For the KI strain, N4 was achieved on day 151, all the 86 markers being B6-homozygous as early as on day 106 at N3. The carrier males at the final generation were all fertile and propagated the modified genes. Thus, three congenic strains were established through rapid generation turnover between 41 and 44 days. Conclusions/Significance This new high-speed breeding strategy enables us to produce congenic strains within about half a year. It should provide the fastest protocol for precise definition of the phenotypic effects of genes of interest on desired genetic backgrounds.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons

Yuki Hatanaka; Kimiko Inoue; Mami Oikawa; Satoshi Kamimura; Narumi Ogonuki; Eiichi Kodama; Yasuyuki Ohkawa; Yu Ichi Tsukada; Atsuo Ogura

Significance Retrotransposons constitute substantial proportions of mammalian genomes and can be harmful when activated ectopically. DNA methylation is the major mechanism for retrotransposon silencing, but we do not know how late preimplantation embryos, which are exceptionally hypomethylated, are protected from retrotransposons. Knockdown of the histone chaperone chromatin assembly factor 1 (CAF-1) resulted in significant up-regulation of retrotransposons (e.g., long interspersed element 1) and mouse embryonic death at morula stage. CAF-1 was responsible for deposition of histone variant H3.1/3.2 and repressive histone marks, including trimethylation of histone H4 on lysine 20 (H4K20me3) and H3K9me3, at retrotransposon regions. Depletion of H4K20me3 or H3K9me3 by knockdown of specific histone methyltransferases resulted in up-regulation of retrotransposons in morulae. Thus, hypomethylated preimplantation mouse embryos are protected by repressive histone modifications mediated by CAF-1. Substantial proportions of mammalian genomes comprise repetitive elements including endogenous retrotransposons. Although these play diverse roles during development, their appropriate silencing is critically important in maintaining genomic integrity in the host cells. The major mechanism for retrotransposon silencing is DNA methylation, but the wave of global DNA demethylation that occurs after fertilization renders preimplantation embryos exceptionally hypomethylated. Here, we show that hypomethylated preimplantation mouse embryos are protected from retrotransposons by repressive histone modifications mediated by the histone chaperone chromatin assembly factor 1 (CAF-1). We found that knockdown of CAF-1 with specific siRNA injections resulted in significant up-regulation of the retrotransposons long interspersed nuclear element 1, short interspersed nuclear element B2, and intracisternal A particle at the morula stage. Concomitantly, increased histone H2AX phosphorylation and developmental arrest of the majority (>95%) of embryos were observed. The latter was caused at least in part by derepression of retrotransposons, as treatment with reverse transcriptase inhibitors rescued some embryos. Importantly, ChIP analysis revealed that CAF-1 mediated the replacement of H3.3 with H3.1/3.2 at the retrotransposon regions. This replacement was associated with deposition of repressive histone marks, including trimethylation of histone H3 on lysine 9 (H3K9me3), H3K9me2, H3K27me3, and H4K20me3. Among them, H4K20me3 and H3K9me3 seemed to play predominant roles in retrotransposon silencing, as assessed by knockdown of specific histone methyltransferases and forced expression of unmethylatable mutants of H3.1K9 and H4K20. Our data thus indicate that CAF-1 is an essential guardian of the genome in preimplantation mouse embryos by deposition of repressive histone modifications via histone variant replacement.


Journal of Biological Chemistry | 2013

Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells

Arata Honda; Masanori Hatori; Michiko Hirose; Chizumi Honda; Haruna Izu; Kimiko Inoue; Ryutaro Hirasawa; Shogo Matoba; Sumie Togayachi; Hiroyuki Miyoshi; Atsuo Ogura

Background: The quality of induced pluripotent stem (iPS) cells might be inherently worse than embryonic stem cells. Results: Although the differentiation capacity of iPS cells is limited, it can be enhanced. Conclusion: Improving their level of pluripotency alleviated the limited capacity of iPS cells. Significance: This report offers an effective strategy for the development of iPS cell-based research. Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.


Human Molecular Genetics | 2014

RNA sequencing-based identification of aberrant imprinting in cloned mice

Hiroaki Okae; Shogo Matoba; Takeshi Nagashima; Eiji Mizutani; Kimiko Inoue; Narumi Ogonuki; Hatsune Chiba; Ryo Funayama; Satoshi Tanaka; Nobuo Yaegashi; Keiko Nakayama; Hiroyuki Sasaki; Atsuo Ogura; Takahiro Arima

Animals cloned by somatic cell nuclear transfer (SCNT) provide a unique model for understanding the mechanisms of nuclear epigenetic reprogramming to a state of totipotency. Though many phenotypic abnormalities have been demonstrated in cloned animals, the underlying mechanisms are not well understood. In this study, we performed transcriptome-wide allelic expression analyses in brain and placental tissues of cloned mice. We found that Gab1, Sfmbt2 and Slc38a4 showed loss of imprinting in all cloned mice analyzed, which might be involved in placentomegaly of cloned mice. These three genes did not require de novo DNA methylation in growing oocytes for the establishment of imprinting, implying the involvement of a de novo DNA methylation-independent mechanism. Loss of Dlk1-Dio3 imprinting was also observed in nearly half of cloned mouse embryos and showed a strong correlation with embryonic lethality. Our findings are essential to understand the underlying mechanisms of developmental abnormalities of cloned animals. We also emphasize that particular attention should be paid to specific imprinted genes for therapeutic and agricultural applications of SCNT.


Placenta | 2009

Embryonic Rather than Extraembryonic Tissues Have More Impact on the Development of Placental Hyperplasia in Cloned Mice

Hiromi Miki; Noriko Wakisaka; Kimiko Inoue; Narumi Ogonuki; M. Mori; Jin-Moon Kim; Akihiko Ohta; Atsuo Ogura

Somatic cell cloning by nuclear transfer (NT) in mice is associated with hyperplastic placentas at term. To dissect the effects of embryonic and extraembryonic tissues on this clone-associated phenotype, we constructed diploid (2n) fused with (<-->) tetraploid (4n) chimeras from NT- and fertilization-derived (FD) embryos. Generally, the 4n cells contributed efficiently to all the extraembryonic tissues but not to the embryo itself. Embryos constructed by 2n NT<-->4n FD aggregation developed hyperplastic placentas (0.33+/-0.22 g) with a predominant contribution by NT-derived cells. Even when the population of FD-derived cells in placentas was increased using multiple FD embryos (up to four) for aggregation, most placentas remained hyperplastic (0.36+/-0.13 g). By contrast, placentas of the reciprocal combination, 2n FD<-->4n NT, were less hyperplastic (0.15+/-0.02 g). These nearly normal-looking placentas had a large proportion of NT-derived cells. Thus, embryonic rather than extraembryonic tissues had more impact on the onset of placental hyperplasia, and that the abnormal placentation in clones occurs in a noncell-autonomous manner. These findings suggest that for improvement of cloning efficiency we should understand the mechanisms regulating placentation, especially those of embryonic origin that might control the proliferation of trophoblastic lineage cells.

Collaboration


Dive into the Kimiko Inoue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narumi Ogonuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mami Oikawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Fumitoshi Ishino

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge