Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimiko Yabe is active.

Publication


Featured researches published by Kimiko Yabe.


Plant Journal | 2008

DNA‐binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit‐ripening regulator RIN

Yasuhiro Ito; Mamiko Kitagawa; Nao Ihashi; Kimiko Yabe; Junji Kimbara; Junichi Yasuda; Hirotaka Ito; Takahiro Inakuma; Seiji Hiroi; Takafumi Kasumi

The RIN gene encodes a putative MADS box transcription factor that controls tomato fruit ripening, and its ripening inhibitor (rin) mutation yields non-ripening fruit. In this study, the molecular properties of RIN and the rin mutant protein were clarified. The results revealed that the RIN protein accumulates in ripening fruit specifically and is localized in the nucleus of the cell. In vitro studies revealed that RIN forms a stable homodimer that binds to MADS domain-specific DNA sites. Analysis of binding site selection experiments revealed that the consensus binding sites of RIN highly resemble those of the SEPALLATA (SEP) proteins, which are Arabidopsis MADS box proteins that control the identity of floral organs. RIN exhibited a transcription-activating function similar to that exhibited by the SEP proteins. These results indicate that RIN exhibits similar molecular functions to SEP proteins although they play distinctly different biological roles. In vivo assays revealed that RIN binds to the cis-element of LeACS2. Our results also revealed that the rin mutant protein accumulates in the mutant fruit and exhibits a DNA-binding activity similar to that exhibited by the wild-type protein, but has lost its transcription-activating function, which in turn would inhibit ripening in mutant fruit.


Applied and Environmental Microbiology | 2004

Cyclo(l-Leucyl-l-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus

Pei-Sheng Yan; Yuan Song; Emi Sakuno; Hiromitsu Nakajima; Hiroyuki Nakagawa; Kimiko Yabe

ABSTRACT Aflatoxins are potent carcinogenic and toxic substances that are produced primarily by Aspergillus flavus and Aspergillus parasiticus. We found that a bacterium remarkably inhibited production of norsolorinic acid, a precursor of aflatoxin, by A. parasiticus. This bacterium was identified as Achromobacter xylosoxidans based on its 16S ribosomal DNA sequence and was designated A. xylosoxidans NFRI-A1. A. xylosoxidans strains commonly showed similar inhibition. The inhibitory substance(s) was excreted into the medium and was stable after heat, acid, or alkaline treatment. Although the bacterium appeared to produce several inhibitory substances, we finally succeeded in purifying a major inhibitory substance from the culture medium using Diaion HP20 column chromatography, thin-layer chromatography, and high-performance liquid chromatography. The purified inhibitory substance was identified as cyclo(l-leucyl-l-prolyl) based on physicochemical methods. The 50% inhibitory concentration for aflatoxin production by A. parasiticus SYS-4 (= NRRL2999) was 0.20 mg ml−1, as determined by the tip culture method. High concentrations (more than 6.0 mg ml−1) of cyclo(l-leucyl-l-prolyl) further inhibited fungal growth. Similar inhibitory activities were observed with cyclo(d-leucyl-d-prolyl) and cyclo(l-valyl-l-prolyl), whereas cyclo(d-prolyl-l-leucyl) and cyclo(l-prolyl-d-leucyl) showed weaker activities. Reverse transcription-PCR analyses showed that cyclo(l-leucyl-l-prolyl) repressed transcription of the aflatoxin-related genes aflR, hexB, pksL1, and dmtA. This is the first report of a cyclodipeptide that affects aflatoxin production.


Applied and Environmental Microbiology | 2005

Function of the cypX and moxY Genes in Aflatoxin Biosynthesis in Aspergillus parasiticus

Ying Wen; Hidemi Hatabayashi; Hatsue Arai; Hiroko K. Kitamoto; Kimiko Yabe

ABSTRACT The pathway oxoaverantin (OAVN) → averufin (AVR) → hydroxyversicolorone (HVN) → versiconal hemiacetal acetate (VHA) is involved in aflatoxin biosynthesis, and the cypX and moxY genes, which are present in the aflatoxin gene cluster, have been previously suggested to be involved in this pathway. To clarify the function of these two genes in more detail, we disrupted the genes in aflatoxigenic Aspergillus parasiticus NRRL 2999. The cypX-deleted mutant lost aflatoxin productivity and accumulated AVR in the mycelia. Although this mutant converted HVN, versicolorone (VONE), VHA, and versiconol acetate (VOAc) to aflatoxins in feeding experiments, it could not produce aflatoxins from either OAVN or AVR. The moxY-deleted mutant also lost aflatoxin productivity, whereas it newly accumulated HVN and VONE. In feeding experiments, this mutant converted either VHA or VOAc to aflatoxins but did not convert OAVN, AVR, HVN, or VONE to aflatoxins. These results demonstrated that cypX encodes AVR monooxygenase, catalyzing the reaction from AVR to HVN, and moxY encodes HVN monooxygenase, catalyzing a Baeyer-Villiger reaction from HVN to VHA as well as from VONE to VOAc. In this work, we devised a simple and rapid method to extract DNA from many fungi for PCR analyses in which cell disruption with a shaker and phenol extraction were combined.


Applied Microbiology and Biotechnology | 2001

Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae)

Kenichiro Matsushima; Kumiko Yashiro; Yoshiki Hanya; Keietsu Abe; Kimiko Yabe; Takashi Hamasaki

Abstract. Ten strains isolated from industrial soy sauce producing koji mold were identified as Aspergillus sojae and distinguished from Aspergillus parasiticus morphologically and physiologically. There was no detectable aflatoxin in any culture extracts of A. sojae strains. Strain 477 was chosen as a representative strain of industrial A. sojae for further molecular analysis. All enzymatic activities associated with the aflatoxin biosynthesis were not detected or negligible in strain 477 compared with that of the A. parasiticus strain. Southern analysis suggested that the genomic DNA of strain 477 contained aflatoxin biosynthetic pathway genes. In contrast, all industrial strains lacked detectable transcripts of aflR, the main regulatory gene for aflatoxin biosynthesis, under the aflatoxin-inducing condition. Our data suggest that defects in aflR expression cause the lack of expression of aflatoxin-related genes which results in the absence of aflatoxin biosynthesis in A. sojae strains.


Applied and Environmental Microbiology | 2003

Enzymatic Conversion of Averufin to Hydroxyversicolorone and Elucidation of a Novel Metabolic Grid Involved in Aflatoxin Biosynthesis

Kimiko Yabe; Naomi Chihaya; Shioka Hamamatsu; Emi Sakuno; Takashi Hamasaki; Hiromitsu Nakajima; Joan W. Bennett

ABSTRACT The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1′S,5′S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1′R,5′R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1′S,5′S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.


Microbiology | 1991

A metabolic grid among versiconal hemiacetal acetate, versiconol acetate, versiconol and versiconal during aflatoxin biosynthesis

Kimiko Yabe; Y Ando; Takashi Hamasaki

Dichlorvos treatment of aflatoxigenic Aspergillus parasiticus SYS-4 (NRRL 2999) or a verscolorin A-accumulating mutant, NIAH-9, resulted in accumulation of versiconol acetate (VOAc) and versiconal hemiacetal acetate (VHA), whereas the production of aflatoxins, versicolorin A (VA), and versiconol (VOH) decreased. In feeding experiments using another non-aflatoxigenic mutant, NIAH-26, aflatoxins were newly produced from each of VHA, VOAc, VOH, versicolorin B (VB) and versicolorin C (VC). In these experiments, aflatoxin production from VHA or VOAc was inhibited by dichlorvos, whereas that from each of VOH, VB and VC was insensitive to dichlorvos. In cell-free experiments using the cytosol fraction of NIAH-26, VHA was converted to VC (or VB) and a substance tentatively identified as versiconal (VHOH). By further addition of NADH or NADPH to the same reaction mixture, VOAc and VOH were also formed together with VC (VB) and VHOH. VOH was produced from VOAc irrespective of nicotinamide adenine nucleotide. Also, the incubation of VOH in the presence of NAD or NADP led to the formation of VC (VB). The production of VC (VB) and VHOH from VHA, and that of VOH from VOAc was inhibited by dichlorvos, whereas the production of VOAc from VHA, and that of VC (VB) from VOH, was insensitive to dichlorvos. These results indicate that a metabolic grid catalysed by dehydrogenase and esterase among VHA, VOAc, VOH and VHOH, and a reaction from VHOH to VC (VB) are involved in aflatoxin biosynthesis. These enzyme activities were also detected when yeast extract peptone medium was used, or when A. oryzae SYS-2 was examined.


Fungal Genetics and Biology | 2008

Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus

Jingjing Cai; Hongmei Zeng; Yoko Shima; Hidemi Hatabayashi; Hiroyuki Nakagawa; Yasuhiro Ito; Yoshikazu Adachi; Hiromitsu Nakajima; Kimiko Yabe

The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA genes function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G(1) (AFG(1)). LC-MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG(1). We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG(1) from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A.parasiticus strain significantly enhanced the AFG(1) formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG(1), which required NADPH or NADH, indicating that NADA is a precursor of AFG(1); in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG(1), the last step in G-aflatoxin biosynthesis.


Applied and Environmental Microbiology | 2004

The Aspergillus parasiticus estA-Encoded Esterase Converts Versiconal Hemiacetal Acetate to Versiconal and Versiconol Acetate to Versiconol in Aflatoxin Biosynthesis

Perng-Kuang Chang; Kimiko Yabe; Jiujiang Yu

ABSTRACT In aflatoxin biosynthesis, the pathway for the conversion of 1-hydroxyversicolorone to versiconal hemiacetal acetate (VHA) to versiconal (VHOH) is part of a metabolic grid. In the grid, the steps from VHA to VHOH and from versiconol acetate (VOAc) to versiconol (VOH) may be catalyzed by the same esterase. Several esterase activities are associated with the conversion of VHA to VHOH, but only one esterase gene (estA) is present in the complete aflatoxin gene cluster of Aspergillus parasiticus. We deleted the estA gene from A. parasiticus SRRC 2043, an O-methylsterigmatocystin (OMST)-accumulating strain. The estA-deleted mutants were pigmented and accumulated mainly VHA and versicolorin A (VA). A small amount of VOAc and other downstream aflatoxin intermediates, including VHOH, versicolorin B, and OMST, also were accumulated. In contrast, a VA-accumulating mutant, NIAH-9, accumulated VA exclusively and neither VHA nor VOAc were produced. Addition of the esterase inhibitor dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the transformation recipient strain RHN1, an estA-deleted mutant, or NIAH-9 resulted in the accumulation of only VHA and VOAc. In in vitro enzyme assays, the levels of the esterase activities catalyzing the conversion of VHA to VHOH in the cell extracts of two estA-deleted mutants were decreased to approximately 10% of that seen with RHN1. Similar decreases in the esterase activities catalyzing the conversion of VOAc to VOH were also obtained. Thus, the estA-encoded esterase catalyzes the conversion of both VHA to VHOH and VOAc to VOH during aflatoxin biosynthesis.


Applied and Environmental Microbiology | 2005

Aspergillus parasiticus Cyclase Catalyzes Two Dehydration Steps in Aflatoxin Biosynthesis

Emi Sakuno; Ying Wen; Hidemi Hatabayashi; Hatsue Arai; Chiemi Aoki; Kimiko Yabe; Hiromitsu Nakajima

ABSTRACT In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.


Applied and Environmental Microbiology | 2003

Involvement of two cytosolic enzymes and a novel intermediate, 5'-oxoaverantin, in the pathway from 5'-hydroxyaverantin to averufin in aflatoxin biosynthesis.

Emi Sakuno; Kimiko Yabe; Hiromitsu Nakajima

ABSTRACT During aflatoxin biosynthesis, 5′-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5′-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed.

Collaboration


Dive into the Kimiko Yabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidemi Hatabayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Nakagawa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Naomi Chihaya

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Ito

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge