Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiminobu Imasaka is active.

Publication


Featured researches published by Kiminobu Imasaka.


Nanotechnology | 2006

Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water

Kiminobu Imasaka; Junya Suehiro; Yusuke Kanatake; Yuki Kato; Masanori Hara

A novel technique for the preparation of water-soluble carbon nanotubes was demonstrated using a pulsed streamer discharge generated in water. The technique involved chemical reactions between radicals generated by the pulsed streamer discharge and carbon nanotubes. The pulsed streamer-treated carbon nanotubes were homogeneously dispersed and well solubilized in water for a month or longer. The mechanism of solubilization of carbon nanotubes by the pulsed streamer discharge is discussed based on FTIR spectroscopy and optical emission spectra measurements. FTIR spectroscopy revealed that -OH groups, which are known to impart a hydrophilic nature to carbon material, were introduced on the carbon nanotube surface. Optical emission spectra from the pulsed streamer plasma showed that highly oxidative O(*) and H(*) radicals were generated in water. These results suggest that the functionalization of the carbon nanotube surface by -OH group can be attributed to the O(*) and H(*) radicals. An advantage of the proposed method is that there is no need for any chemical agents or additives for solubilization. Chemical agents for solubilization are generated from the water itself by the electrochemical reactions induced by the pulsed streamer discharge.


IEEE Transactions on Dielectrics and Electrical Insulation | 2006

Analysis of PD-generated SF/sub 6/ decomposition gases adsorbed on carbon nanotubes

Weidong Ding; Ryota Hayashi; Kohei Ochi; Junya Suehiro; Kiminobu Imasaka; Masanori Hara; Noriaki Sano; Eiichi Nagao; Tadao Minagawa

Chemical byproducts analysis has been recognized as a powerful diagnosis method for SF6 gas-insulated switchgear (GIS). The authors have previously demonstrated that a carbon nanotube (CNT) gas sensor could detect partial discharge (PD) generated in SF6 gas. However, PD-generated decomposition gas species, which were responsible for the CNT gas sensor response, have not been identified yet. In this paper, two kinds of experiments were conducted in order to identify the responsible decomposition gas species. At first, the decomposition gas molecules adsorbed on CNTs were analyzed by Fourier transformation infrared (FTIR) spectroscopy. FTIR absorbance was observed around 735 cm-1 after CNTs were exposed to PD generated in SF6. In the second experiment, the CNT gas sensor responses to typical SF6 decomposition products (HF and SF4) were examined. The CNT gas sensor responded to these gases in the same way as to PD generated in SF6. SF4 response was larger than HF response. Based on these results, SF 4 and SOF2 emerged as candidates for the responsible decomposition gases. Electrochemical interactions between adsorbed gas molecules and CNT were discussed based on theoretical predictions of molecular orbital calculations. The calculation results suggested that both of SOF2 and SF4 could increase the CNT gas sensor conductance


Nanotechnology | 2007

Enhancement of microplasma-based water-solubilization of single-walled carbon nanotubes using gas bubbling in water

Kiminobu Imasaka; Yuki Kato; Junya Suehiro

The authors have previously proposed a novel technique for the preparation of water-soluble carbon nanotubes (CNTs) using microplasma generated by a pulsed streamer discharge in water. This paper describes an improvement in the method of the microplasma-based CNT solubilization process by the use of gas bubbling in water. Oxygen, argon and nitrogen were used as bubbling gas in order to clarify the effects of the gas species on the single-walled CNT (SWCNT) solubilization efficiency. Ultraviolet‐visible absorption spectra of the SWCNT suspensions revealed that the SWCNT solubility was increased by more than two times by using gas bubbling together with microplasma treatment. No significant difference was observed among the three gas species tested. Fourier transform infrared (FTIR)spectroscopy and x-ray photoelectron spectroscopy (XPS) analysis showed that the number of ‐OH groups, introduced on the SWCNT surface by the microplasma treatment, was increased by gas bubbling. Optical emission measurements also showed that the number of highly oxidative oxygen and hydrogen radicals, which were generated by the microplasma, was also increased by gas bubbling. These results indicate that gas bubbling has positive effects on microplasma-based SWCNT solubilization as a result of enhanced radical formation and functionalization of the SWCNT surface. (Some figures in this article are in colour only in the electronic version)


IEEE Transactions on Dielectrics and Electrical Insulation | 2006

Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF/sub 6/

Weidong Ding; Ryota Hayashi; Junya Suehiro; Guangbin Zhou; Kiminobu Imasaka; Masanori Hara

The authors proposed a new type of gas sensor for high sensitive detection of decomposition products generated by partial discharge (PD) in SF/sub 6/ gas. The sensor employed carbon nanotubes (CNTs) as gas sensing transducer and was fabricated by electrokinetic manipulation of CNTs using dielectrophoresis. Due to complicated gas decomposition process of SF/sub 6/ gas, calibration of the CNT gas sensor is an essential and challenging subject in order to realize reliable and stable detection of PD under practical conditions. In this paper, two methods for the CNT gas sensor calibration were proposed and tested. The first method was based on initial conductance dependence of the CNT gas sensor response. The CNT gas sensor response to PD increased almost linearly with the amount of CNT trapped onto the sensor electrode, which could be quantified by the initial conductance of the sensor. However, the calibration accuracy of this method was about 50 % and was not high enough for practical use. The second method employed NO/sub 2/ (nitrogen dioxide) as calibration gas because of the similarity in the CNT sensor response to PD decomposition products and NO2. It was found that the accuracy of the NO/sub 2/ calibration was about 10 % and far better than the first method. Finally, effectiveness of the NO/sub 2/ calibration was demonstrated by a PD monitoring test in which two CNT sensors were simultaneously exposed to SF/sub 6/ decomposition products with identical concentration.


Japanese Journal of Applied Physics | 2003

Production of carbon nanoparticles using pulsed arc discharge triggered by dielectric breakdown in water

Junya Suehiro; Kiminobu Imasaka; Yutaka Ohshiro; Guangbin Zhou; Masanori Hara; Noriaki Sano

This paper describes a simple production method for carbon nanoparticles by pulsed arc discharge in water, which is triggered by the electrical breakdown of water between graphite electrodes. High-resolution transmission electron microscopy (HRTEM) observation revealed that the main products obtained by the proposed method were onion-like nanoparticles; while carbon nanotubes were not formed. The carbon nanoonions uniformly dispersed in water forming micron-sized aggregates. The effects of the arc discharge mode (dc or pulse) on the nanoparticle formation mechanism are discussed.


IEEE Transactions on Dielectrics and Electrical Insulation | 2001

PD characteristics in an air-filled void at room temperature under superimposed sinusoidal voltages

Takashi Kurihara; Shin-ichiro Tsuru; Kiminobu Imasaka; Junya Suehiro; Masanori Hara

Partial discharge in an artificial air-filled void under superimposed sinusoidal voltages is investigated at room temperature in order to clarify the effect of voltage superposition. The applied voltage waveform is composed of a 60 Hz fundamental sinusoidal wave and a high frequency sinusoidal wave of 300 Hz to 1.2 kHz. It was found that PD started when the peak value of the superimposed voltage reached the PD inception voltage under 60 Hz sinusoidal voltage. Also, PD occurrence frequency increased remarkably when the peak value of the high frequency component exceeded a critical value, which is smaller than the PD inception voltage under 60 Hz sinusoidal voltage. PD characteristics under such conditions were discussed as the effect of the residual voltage, caused by the surface charge deposited in the void by the preceding PD. The obtained experimental results suggest that the superposition of high frequency component accelerates the degradation of the solid insulator containing void defects.


Iet Nanobiotechnology | 2009

Bacterial detection using a carbon nanotube gas sensor coupled with a microheater for ammonia synthesis by aerobic oxidisation of organic components

Junya Suehiro; N. Ikeda; Akio Ohtsubo; Kiminobu Imasaka

In this study, the authors propose a new bacteria detection method using a carbon nanotube (CNT) gas sensor and a microheater, which were coupled into a Bio-MEMS (microelectromechanical systems)-type device. Bacteria were heated by the microheater in air so that ammonia (NH(3)) gas can be generated by the oxidation reaction of organic components of bacteria. Thus generated NH(3) gas was detected by using the CNT gas sensor, which was fabricated by dielectrophoresis (DEP) and combined with the microheater to form a small chamber. Cyclic pulsed heating operation was employed so that the CNT response to elevated temperature did not mask NH(3) response. It was demonstrated that the proposed device could detect and quantify 10(7) bacteria cells (Escherichia coli). Possible application of DEP to trap and enrich target bacteria on the microheater was also discussed.


Japanese Journal of Applied Physics | 2009

Effects of pH on water-solubilization of carbon nanotube using microplasma in aqueous solution

Kiminobu Imasaka; Yuki Kato; Usama Khaled; Junya Suehiro

The authors have previously proposed a novel technique for the preparation of water-soluble carbon nanotubes (CNTs) using microplasma generated by a pulsed streamer discharge in water. This paper describes effects of pH values on water-solubility of single-walled CNT (SWCNT) treated by the microplasma. The SWCNT treated under basic conditions showed two times higher solubility compared to that treated under neutral condition, whereas the SWCNT solubility considerably decreased under acidic conditions. Based on optical emission measurements of microplasma showed that radical formation was not pH sensitive. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the microplasma treated SWCNT was functionalized with –COO- groups with little pH dependence. In contrary, clear pH dependence was observed for zeta potential of the microplasma-treated SWCNT. The lowest zeta potential was -46 mV, which was obtained with basic solution adjusted by NH3 (pH ≈9). The SWCNT treated under basic conditions was more negatively charged due to suppressed protonation of –COO- groups. As a result, the electrostatic repulsion force between SWCNTs could overcome van der Waals force improving their solubility and dispersibility in water.


IEEE Transactions on Dielectrics and Electrical Insulation | 2007

AC particle-triggered corona discharge in low pressure SF/sub 6/ gas

Yulistya Negara; Kohei Yaji; Kiminobu Imasaka; Noriyuki Hayashi; Junya Suehiro; Masanori Hara

This paper deals with AC particle-triggered corona discharge as a follow-up to our previous research with DC voltage to clarify the particle-triggered corona discharge process in SF6 gas. Corona current pulses, charges associated with a corona current pulse, and corona light pulses were observed with an aluminum ellipsoidal particle suspended in a parallel plane electrode system under a SF6 gas pressure range of 30 kPalesPles50 kPa by changing the particle position. Corona mode, phase (Phi)-charge (q) characteristics as well as corona discharge processes were discussed and the following results were obtained. AC corona mode depended on the instantaneous applied voltage, voltage gradient as well as the particle position and then, the Phi-q characteristics were also affected by those parameters. Charges flow into the floating particle due to coronas on the both tips of particle and excite field fluctuations around the opposite side of particle in addition to the applied AC field. The field fluctuation in SF6 gas by the corona charges was about 4% of the applied field and much lower than that in air gap which was about 70%. That is, the corona development was suppressed effectively by high electron affinity of SF6 gas even in the case of floating particle. The less effective interference between coronas on the both side of particle in SF6 gas results in an obscure local minimum in the breakdown voltage characteristics as the particle is in the vicinity of electrode as contrasted with a drastic fall in the breakdown voltage by the particle in air.


IEEE Transactions on Dielectrics and Electrical Insulation | 2007

Factors affecting PD detection in GIS using a carbon nanotube gas sensor

Weidong Ding; Kohei Ochi; Junya Suehiro; Kiminobu Imasaka; Ryota Hayashi; Masanori Hara

The authors have previously demonstrated that a carbon nanotube (CNT) gas sensor can detect SF6 decomposition byproducts generated by partial discharges (PDs). There are several factors to be considered, however, before applying the CNT gas sensor to practical diagnosis of a gas-insulated switchgear (GIS). In this paper, three major factors, namely, the effects of operating temperature and installation location of the CNT gas sensor and SF6/N2 gas mixture, were investigated. The stability of sensor conductance and the sensor response to PD were improved by controlling the sensor operating temperature. The maximum sensor response was obtained at about 70 degC. The CNT gas sensor, which was installed in an external pipe connected to the GIS tank, could detect PD generated in the tank, although the sensor response became lower and slower as the sensor was located further away from the PD source. It was found that the sensor response to PD showed a clear dependence on the mixing ratio of the SF6/N2 gas mixture. The maximum sensor response was achieved for SF6/N2 (20%/80%) gas mixture. This result was discussed based on Fourier transformation infrared (FTIR) analysis of PD decomposition byproducts adsorbed on the CNT surface.

Collaboration


Dive into the Kiminobu Imasaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weidong Ding

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge