Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimiyuki Tsuchiya is active.

Publication


Featured researches published by Kimiyuki Tsuchiya.


Biochemical Genetics | 2000

A Phylogenetic View on Species Radiation in Apodemus Inferred from Variation of Nuclear and Mitochondrial Genes

Keiko Serizawa; Hitoshi Suzuki; Kimiyuki Tsuchiya

Species of field mice (genus Apodemus) are the most common rodents inhabiting woodlands and forests of the Palaearctic region. We examined the cytochrome b (cyt b) gene in mitochondrial DNA (1140 bp) and the interphotoreceptor retinoid binding protein (IRBP) gene in nuclear DNA (1152 bp) in nine species of Apodemus. Based on the genetic variation, the nine species were grouped into four lineages: (1) Agrarius group (A. agrarius, A. peninsulae, A. semotus, and A. speciosus), (2) Argenteus group (A. argenteus), (3) Gurkha group (A. gurkha), and (4) Sylvaticus group (A. alpicola, A. flavicollis, and A. sylvaticus). It was shown that these four lineages diverged within a short period of evolutionary time, suggestive of a radiation event. Soon after the radiation, the Agrarius group was likely to have differentiated again into the species lineages simultaneously. In contrast, the European clade, the Sylvaticus group, radiated rather recently. The relative ratio of the extent of sequence divergence among the four main lineages to that among the members of the subfamily Murinae (including Mus and Rattus) was calculated to be 72.4% in the cyt b gene with transversional substitutions, and 58.5% in the IRBP gene with all substitutions, using the Kimura two-parameter method. The value for the three European lineages was 27.6% in the cyt b gene and 12.3% in the IRBP gene. These results may have a correlation with the notion that deciduous broadleaf forests remained in Central East Asia through the late Tertiary to the present, while those in Europe to a large extent had disappeared by the Pliocene.


Zoological Science | 2003

Geographic Variation and Diversity of the Cytochrome b Gene in Japanese Wild Populations of Medaka, Oryzias latipes

Yusuke Takehana; Naoko Nagai; Masaru Matsuda; Kimiyuki Tsuchiya; Mitsuru Sakaizumi

Abstract We conducted a polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome b gene to elucidate the detailed genetic population structure of Japanese wild populations of medaka, Oryzias latipes. The analysis of 1,225 specimens collected from 303 sites identified 67 mitotypes. Subsequently we determined the nucleotide sequences of the complete cytochrome b gene (1141-bp) to clarify the phylogenetic relationships among mitotypes. The phylogenetic tree based on nucleotide sequences indicated three major clades (A, B and C) that differed by 11.3-11.8%, corresponding to three clusters previously identified by RFLP analysis of entire mitochondrial DNAs. The geographic distribution of mitotypes in clades A and B was fully concordant with the Northern and Southern Populations defined by allozymes. Clade A could be subdivided into three subclades and clade B into eleven, with sequence divergences among subclades of 1.3–5.8%. Each distribution of mitotypes in subclades roughly corresponded to that of mtDNA haplotypes in subclusters previously identified. Mitotypes in clade C were found only in the Kanto district. The phylogenetic relationships and the estimated divergence times suggest that three Japanese clades originated from a common ancestor and were separated during the Pliocene, and that the regional differentiation of subclades was closely connected with the geological history of the Quaternary. This study has also demonstrated the possibility of artificial disturbance of natural distribution especially in the Kanto district and the superior efficacy of PCRRFLP analysis as a simple method for detecting genetic variation and artificial gene flow of medaka.


Zoological Science | 2003

Phylogenetic Relationships and Divergence Times among Mustelids (Mammalia: Carnivora) Based on Nucleotide Sequences of the Nuclear Interphotoreceptor Retinoid Binding Protein and Mitochondrial Cytochrome b Genes

Jun Sato; Tetsuji Hosoda; Mieczyłlaw Wolsan; Kimiyuki Tsuchiya; Masahiko Yamamoto; Hitoshi Suzuki

Abstract Phylogenetic relationships among 20 species-group taxa of Mustelidae, representing Mustelinae (Mustela, Martes, Gulo), Lutrinae (Enhydra), and Melinae (Meles), were examined using nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein (IRBP) and mitochondrial cytochrome b genes. Neighbor-joining and maximum-parsimony phylogenetic analyses on these genes separately and combined were conducted. While IRBP performed better than cytochrome b in recovering more-inclusive clades, cytochrome b demonstrated more resolving power in recovering less-inclusive clades. Strong support was found for a close affinity of Enhydra with Mustela to the exclusion of Martes and Gulo (causing Mustelinae to be paraphyletic); the most-basal position of Mustela vison within Mustela, followed by Mustela erminea; an association of Mustela lutreola, Mustela itatsi, Mustela sibirica, and the subgenus Putorius (including Mustela putorius and Mustela eversmanii), to the exclusion of Mustela nivalis and Mustela altaica; and a basal position of Mustela itatsi to a clade containing Mustela sibirica and Putorius. Whereas cytochrome b strongly supported Mustela lutreola as the sister species to Putorius, IRBP strongly supported its basal placement to the Mustela itatsi-Mustela sibirica-Putorius clade. The low level of sequence divergence in cytochrome b between Mustela lutreola and Putorius is therefore a result of interspecific mitochondrial introgression between these taxa, rather than a recent origin of Mustela lutreola in a close relationship to Putorius. Time estimates inferred from IRBP and cytochrome b for mustelid divergence events are mostly in agreement with the fossil record.


Chromosome Research | 2004

Karyotypic Evolution of Apodemus (Muridae, Rodentia) Inferred from Comparative FISH Analyses

Kazumi Matsubara; Chizuko Nishida-Umehara; Kimiyuki Tsuchiya; Daiki Nukaya; Yoichi Matsuda

We conducted comparative FISH analyses to investigate the chromosomal rearrangements that have occurred during the evolution of the rodent genus Apodemus, which inhabits broadleaf forests in the temperate zone of the Palaearctic region. Chromosome-specific painting probes of the laboratory mouse were hybridized to chromosomes of seven Apodemus species, A. agrarius, A. argenteus, A. gurkha, A. peninsulae, A. semotus, A. speciosus and A. sylvaticus, and homologous chromosomal regions were determined in the species for the study of karyotypic evolution. Differences in the hybridization patterns were found in nine pairs of autosomes among the seven species. The chromosomal location of the 5S rRNA genes on the telomeric region of chromosome 20 was highly conserved in all the species. In contrast, there was much wider variation in the location of the 18S–28S rRNA genes, although they were predominantly located on chromosomes 7, 8 and 12. Phylogenetic relationships of the seven Apodemus species were inferred from the chromosome rearrangements and the chromosomal distribution patterns of the 18S–28S rRNA genes. The karyotypic relationships correlated well with the molecular phylogeny, and A. semotus had the most highly conserved karyotype among the seven species.


Heredity | 2013

Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA.

Hitoshi Suzuki; Mitsuo Nunome; Gohta Kinoshita; Ken Aplin; Peter Vogel; Alexey P. Kryukov; Mei-Lei Jin; Sang-Hoon Han; Ibnu Maryanto; Kimiyuki Tsuchiya; Hidetoshi Ikeda; Toshihiko Shiroishi; Hiromichi Yonekawa; Kazuo Moriwaki

We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37–0.47 and 0.14–0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes.


Biochemical Genetics | 2002

A spatial aspect on mitochondrial DNA genealogy in Apodemus peninsulae from East Asia.

Keiko Serizawa; Hitoshi Suzuki; Masahiro A. Iwasa; Kimiyuki Tsuchiya; M. V. Pavlenko; I. V. Kartavtseva; Galina N. Chelomina; Nikolai E. Dokuchaev; Sang-Hoon Han

Apodemus peninsulae is a field mouse that inhabits the broad-leafed forests of temperate Eurasia. We examined the mitochondrial cytochrome b gene in 57 individuals of A. peninsulae from northeastern Asia, including Siberia, Primorye, Magadan region, Sakhalin, Hokkaido, and the Korean Peninsula. The genealogy of the mitochondrial DNA (mtDNA) in A. peninsulae was shown to have substantial geographic affinity, suggesting geographic architecture of northeastern Asia, including the islands of Sakhalin and Hokkaido, played important roles on the cladogenesis. Taking into account the presence of region-specific anciently divergent mtDNA types, three parts of the regions of Primorye, Siberia, and the Korean Peninsula can be denoted as refugia for A. peninsulae during the substantial period of the Quaternary glacial ages. Among the geographic regions examined, Primorye is likely to be the most influential one, from which the mtDNA is thought to have migrated to the neighboring regions of Sakhalin, Hokkaido, the Magadan region, and Siberia during the evolution of this species.


Zoological Science | 2004

Evolution and Biogeography of Talpid Moles from Continental East Asia and the Japanese Islands Inferred from Mitochondrial and Nuclear Gene Sequences

Akio Shinohara; Hitoshi Suzuki; Kimiyuki Tsuchiya; Ya-Ping Zhang; Jing Luo; Xue-Long Jiang; Yingxiang Wang; Kevin L. Campbell

Abstract We sequenced the cytochrome b gene from two little-studied mammal species from the highlands of Southwest China, the long-tailed mole Scaptonyx fusicaudus and the gracile shrew-like mole Uropsilus gracilis. This data was used to examine the phylogenetic relationships among 19 talpid species within the family Talpidae (Mammalia: Eulipotyphla). Cytochrome b gene trees supported a basal placement of shrew-like moles (Uropsilus) within the Talpidae, and suggested that fossorial specializations arose twice during talpid evolution. To assess the evolutionary relationships of moles endemic to this region, we additionally sequenced the 12S rRNA gene and the nuclear recombination-activating gene-1 from eight and ten East Asian taxa, respectively. Analyses of these single and concatenated data sets suggested that East Asian shrew moles diverged prior to the evolution of fossorial Eurasian moles. However, we were unable to determine whether semi-fossorial shrew moles are monophyletic. In contrast, fossorial Eurasian genera (Talpa, Mogera and Euroscaptor) were consistently found to form a monophyletic clade, with Mogera and Euroscaptor representing sister taxa. Furthermore, this fossorial clade grouped with the semi-aquatic Desmana, although with fairly low (35–62%) bootstrap support. Mogera imaizumii was found to be more closely related to M. wogura than to M. tokudae. This implies that the ancestors of these three species entered Japan from the Asian continent in this order via a series of migration events, suggesting that the Japanese Islands have played an important role in preserving mole lineages from ancient to recent times.


Heredity | 2006

Phylogeographic origin of Hokkaido house mice ( Mus musculus ) as indicated by genetic markers with maternal, paternal and biparental inheritance

Mie Terashima; Shunsuke Furusawa; Naoto Hanzawa; Kimiyuki Tsuchiya; Agutinus Suyanto; Kazuo Moriwaki; Hiromichi Yonekawa; Hitoshi Suzuki

We examined intraspecies genetic variation in house mice (Mus musculus molossinus) from the northern third of the Japanese Islands, in order to obtain evidence of the history of mouse colonization that might have shaped the current genetic diversity. We extended the previous sampling of mitochondrial cytochrome b sequence and added information from the Y-linked Sry gene and ribosomal RNA gene surveys. We distinguish mitochondrial haplotypes characteristic of the North Asian musculus subspecies group (involving M. m. musculus and M. m. molossinus) as ‘MUS’, and that of the Southeast Asian castaneus subspecies group as ‘CAS’ (although the mice resemble MUS morphologically). There was a clear geographic partition of MUS and CAS types into southern and northern Hokkaido, respectively. Conversely, on Tohoku, the MUS and CAS types were interspersed without clear geographic subdivision. In contrast to the mtDNA data, all Hokkaido and Tohoku mice examined were found to possess a unique type for the Y-linked Sry gene, specific to Korea and Japan. Restriction site analysis of nuclear rDNA probe showed a consistent distribution of MUS and CAS types, as major and minor components, respectively, in the Hokkaido and Tohoku mice. These data support the previous notion that the Hokkaido and Tohoku mice experienced genetic hybridization between primary residents of CAS origin and MUS newcomers arriving via a southern route. The invasion of the MUS type could correspond with the evidence for arrival of prehistoric peoples. There are, however, alternative interpretations, including genetic admixture between MUS arriving by a southern route and CAS from a northern route.


Parasitology Research | 2004

Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.

Kenji Ishiwata; Akio Shinohara; Kinpei Yagi; Yoichiro Horii; Kimiyuki Tsuchiya; Yukifumi Nawa

Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.


Journal of Mammalogy | 1999

MOLECULAR PHYLOGENY OF RED-BACKED VOLES IN FAR EAST ASIA BASED ON VARIATION IN RIBOSOMAL AND MITOCHONDRIAL DNA

Hitoshi Suzuki; Masahiro A. Iwasa; Masashi Harada; Shigeharu Wakana; Mitsuru Sakaizumi; Sang-Hoon Han; Eiji Kitahara; Yoshiyuki Kimura; I. V. Kartavtseva; Kimiyuki Tsuchiya

Phylogenetic relationships among various species of red-backed voles (Clethrionomys and Eothenomys) from areas surrounding the Sea of Japan were assessed by examining variation in the nuclear ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA). The rDNA data indicated at least six phylogenetically distinct lineages represented by C. rufocanus, C. rex, C. rutilus, E. andersoni, E. smithii, and E. melanogaster. Lineages of rufocanus-rex and andersoni-smithii can be regarded as sister species, respectively. The mtDNA data generally were congruent but also suggested the splitting of two additional species lineages, C. regulus from C. rufocanus and E. imaizumii from E. andersoni-smithii. Our data revealed that these species have a complex evolutionary history, which includes interspecific gene flow.

Collaboration


Dive into the Kimiyuki Tsuchiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Moriwaki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Harada

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Shigeharu Wakana

Central Institute for Experimental Animals

View shared research outputs
Researchain Logo
Decentralizing Knowledge