Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where King Wai Lau is active.

Publication


Featured researches published by King Wai Lau.


Cell | 2011

Massive genomic rearrangement acquired in a single catastrophic event during cancer development

Philip Stephens; Christopher Greenman; Beiyuan Fu; Fengtang Yang; Graham R. Bignell; Laura Mudie; Erin Pleasance; King Wai Lau; David Beare; Lucy Stebbings; Stuart McLaren; Meng-Lay Lin; David J. McBride; Ignacio Varela; Serena Nik-Zainal; Catherine Leroy; Mingming Jia; Andrew Menzies; Adam Butler; Jon Teague; Michael A. Quail; John Burton; Harold Swerdlow; Nigel P. Carter; Laura A. Morsberger; Christine A. Iacobuzio-Donahue; George A. Follows; Anthony R. Green; Adrienne M. Flanagan; Michael R. Stratton

Summary Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%–3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer. PaperClip


Nature | 2012

Systematic identification of genomic markers of drug sensitivity in cancer cells

Mathew J. Garnett; Elena J. Edelman; Sonja J. Heidorn; Christopher Greenman; Anahita Dastur; King Wai Lau; Patricia Greninger; I. Richard Thompson; Xi Luo; Jorge Soares; Qingsong Liu; Francesco Iorio; Didier Surdez; L Leon Chen; Randy J. Milano; Graham R. Bignell; Ah Ting Tam; Helen Davies; Jesse A. Stevenson; Syd Barthorpe; Stephen R. Lutz; Fiona Kogera; Karl Lawrence; Anne McLaren-Douglas; Xeni Mitropoulos; Tatiana Mironenko; Helen Thi; Laura Richardson; Wenjun Zhou; Frances Jewitt

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines—which represent much of the tissue-type and genetic diversity of human cancers—with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing’s sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Cell | 2012

Mutational processes molding the genomes of 21 breast cancers.

Serena Nik-Zainal; Ludmil B. Alexandrov; David C. Wedge; Peter Van Loo; Christopher Greenman; Keiran Raine; David Jones; Jonathan Hinton; John D Marshall; Lucy Stebbings; Andrew Menzies; Sancha Martin; Kenric Leung; Lina Chen; Catherine Leroy; Manasa Ramakrishna; Richard Rance; King Wai Lau; Laura Mudie; Ignacio Varela; David J. McBride; Graham R. Bignell; Susanna L. Cooke; Adam Shlien; John Gamble; Ian Whitmore; Mark Maddison; Patrick Tarpey; Helen Davies; Elli Papaemmanuil

Summary All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed. PaperClip


Nature | 2010

A small-cell lung cancer genome with complex signatures of tobacco exposure

Erin Pleasance; Philip Stephens; Sarah O’Meara; David J. McBride; Alison Meynert; David Jones; Meng-Lay Lin; David Beare; King Wai Lau; Christopher Greenman; Ignacio Varela; Serena Nik-Zainal; Helen Davies; Gonzalo R. Ordóñez; Laura Mudie; Calli Latimer; Sarah Edkins; Lucy Stebbings; Lina Chen; Mingming Jia; Catherine Leroy; John Marshall; Andrew Menzies; Adam Butler; Jon Teague; Jonathon Mangion; Yongming A. Sun; Stephen F. McLaughlin; Heather E. Peckham; Eric F. Tsung

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3–8 of CHD7 in frame, and another two lines carrying PVT1–CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.SUMMARY Cancer is driven by mutation. Worldwide, tobacco smoking is the major lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. 22,910 somatic substitutions were identified, including 132 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in-frame, and another two lines carrying PVT1-CHD7 fusion genes, suggesting that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Nature | 2011

Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma

Ignacio Varela; Patrick Tarpey; Keiran Raine; Dachuan Huang; Choon Kiat Ong; Philip Stephens; Helen Davies; David Jones; Meng-Lay Lin; Jon Teague; Graham R. Bignell; Adam Butler; Juok Cho; Gillian L. Dalgliesh; Danushka Galappaththige; Christopher Greenman; Claire Hardy; Mingming Jia; Calli Latimer; King Wai Lau; John Marshall; Stuart McLaren; Andrew Menzies; Laura Mudie; Lucy Stebbings; David A. Largaespada; Lodewyk F. A. Wessels; Stéphane Richard; Richard J. Kahnoski; John Anema

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Nature | 2010

Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes

Gillian L. Dalgliesh; Kyle A. Furge; Christopher Greenman; Lina Chen; Graham R. Bignell; Adam Butler; Helen Davies; Sarah Edkins; Claire Hardy; Calli Latimer; Jon Teague; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Simon A. Forbes; Mingming Jia; David Jones; Henry Knott; Chai Yin Kok; King Wai Lau; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maguire; Kirsten McLay; Andrew Menzies; Tatiana Mironenko

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification—SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase—as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Cell | 2012

The Life History of 21 Breast Cancers

Serena Nik-Zainal; Peter Van Loo; David C. Wedge; Ludmil B. Alexandrov; Christopher Greenman; King Wai Lau; Keiran Raine; David Jones; John Marshall; Manasa Ramakrishna; Adam Shlien; Susanna L. Cooke; Jonathan Hinton; Andrew Menzies; Lucy Stebbings; Catherine Leroy; Mingming Jia; Richard Rance; Laura Mudie; Stephen Gamble; Philip Stephens; Stuart McLaren; Patrick Tarpey; Elli Papaemmanuil; Helen Davies; Ignacio Varela; David J. McBride; Graham R. Bignell; Kenric Leung; Adam Butler

Summary Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancers life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancers lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancers development, triggering diagnosis. PaperClip


Nature | 2009

Complex landscapes of somatic rearrangement in human breast cancer genomes.

Philip Stephens; David J. McBride; Meng-Lay Lin; Ignacio Varela; Erin Pleasance; Jared T. Simpson; Lucy Stebbings; Catherine Leroy; Sarah Edkins; Laura Mudie; Christopher Greenman; Mingming Jia; Calli Latimer; Jon Teague; King Wai Lau; John Burton; Michael A. Quail; Harold Swerdlow; Carol Churcher; Rachael Natrajan; Anieta M. Sieuwerts; John W.M. Martens; Daniel P. Silver; Anita Langerød; Hege G. Russnes; John A. Foekens; Jorge S. Reis-Filho; Laura J. van 't Veer; Andrea L. Richardson; Anne Lise Børresen-Dale

Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.


Molecular & Cellular Proteomics | 2011

CONSeQuence: Prediction of Reference Peptides for Absolute Quantitative Proteomics Using Consensus Machine Learning Approaches

Claire E. Eyers; Craig Lawless; David C. Wedge; King Wai Lau; Simon J. Gaskell; Simon J. Hubbard

Mass spectrometric based methods for absolute quantification of proteins, such as QconCAT, rely on internal standards of stable-isotope labeled reference peptides, or “Q-peptides,” to act as surrogates. Key to the success of this and related methods for absolute protein quantification (such as AQUA) is selection of the Q-peptide. Here we describe a novel method, CONSeQuence (consensus predictor for Q-peptide sequence), based on four different machine learning approaches for Q-peptide selection. CONSeQuence demonstrates improved performance over existing methods for optimal Q-peptide selection in the absence of prior experimental information, as validated using two independent test sets derived from yeast. Furthermore, we examine the physicochemical parameters associated with good peptide surrogates, and demonstrate that in addition to charge and hydrophobicity, peptide secondary structure plays a significant role in determining peptide “detectability” in liquid chromatography-electrospray ionization experiments. We relate peptide properties to protein tertiary structure, demonstrating a counterintuitive preference for buried status for frequently detected peptides. Finally, we demonstrate the improved efficacy of the general approach by applying a predictor trained on yeast data to sets of proteotypic peptides from two additional species taken from an existing peptide identification repository.


The Journal of Pathology | 2012

Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes

David J. McBride; Dariush Etemadmoghadam; Susanna L. Cooke; Kathryn Alsop; Joshy George; Adam Butler; Juok Cho; Danushka Galappaththige; Christopher Greenman; Karen Howarth; King Wai Lau; Charlotte K.Y. Ng; Keiran Raine; Jon Teague; David C. Wedge; Xavier Caubit; Michael R. Stratton; James D. Brenton; Peter J. Campbell; P. Andrew Futreal; David Bowtell

The application of paired‐end next generation sequencing approaches has made it possible to systematically characterize rearrangements of the cancer genome to base‐pair level. Utilizing this approach, we report the first detailed analysis of ovarian cancer rearrangements, comparing high‐grade serous and clear cell cancers, and these histotypes with other solid cancers. Somatic rearrangements were systematically characterized in eight high‐grade serous and five clear cell ovarian cancer genomes and we report here the identification of > 600 somatic rearrangements. Recurrent rearrangements of the transcriptional regulator gene, TSHZ3, were found in three of eight serous cases. Comparison to breast, pancreatic and prostate cancer genomes revealed that a subset of ovarian cancers share a marked tandem duplication phenotype with triple‐negative breast cancers. The tandem duplication phenotype was not linked to BRCA1/2 mutation, suggesting that other common mechanisms or carcinogenic exposures are operative. High‐grade serous cancers arising in women with germline BRCA1 or BRCA2 mutation showed a high frequency of small chromosomal deletions. These findings indicate that BRCA1/2 germline mutation may contribute to widespread structural change and that other undefined mechanism(s), which are potentially shared with triple‐negative breast cancer, promote tandem chromosomal duplications that sculpt the ovarian cancer genome. Copyright

Collaboration


Dive into the King Wai Lau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Butler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Graham R. Bignell

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Helen Davies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Laura Mudie

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Lucy Stebbings

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Mingming Jia

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ignacio Varela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Andrew Menzies

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge