Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where King Wai Yau is active.

Publication


Featured researches published by King Wai Yau.


Nature | 2003

Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice

S. Hattar; Robert J. Lucas; N. Mrosovsky; S. Thompson; R. H. Douglas; Mark W. Hankins; J. Lem; Martin Biel; Franz Hofmann; Russell G. Foster; King Wai Yau

In the mammalian retina, besides the conventional rod–cone system, a melanopsin-associated photoreceptive system exists that conveys photic information for accessory visual functions such as pupillary light reflex and circadian photo-entrainment. On ablation of the melanopsin gene, retinal ganglion cells that normally express melanopsin are no longer intrinsically photosensitive. Furthermore, pupil reflex, light-induced phase delays of the circadian clock and period lengthening of the circadian rhythm in constant light are all partially impaired. Here, we investigated whether additional photoreceptive systems participate in these responses. Using mice lacking rods and cones, we measured the action spectrum for phase-shifting the circadian rhythm of locomotor behaviour. This spectrum matches that for the pupillary light reflex in mice of the same genotype, and that for the intrinsic photosensitivity of the melanopsin-expressing retinal ganglion cells. We have also generated mice lacking melanopsin coupled with disabled rod and cone phototransduction mechanisms. These animals have an intact retina but fail to show any significant pupil reflex, to entrain to light/dark cycles, and to show any masking response to light. Thus, the rod–cone and melanopsin systems together seem to provide all of the photic input for these accessory visual functions.


Nature | 2005

Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN

Dennis M. Dacey; Hsi Wen Liao; Beth B. Peterson; Farrel R. Robinson; Vivianne C. Smith; Joel Pokomy; King Wai Yau; Paul D. Gamlin

Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, ‘non-image-forming’ functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of ‘giant’, melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, ‘non-image-forming’ and conventional ‘image-forming’ retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.


Cell | 1998

Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library

Dietmar Krautwurst; King Wai Yau; Randall R. Reed

The recognition of odorants by olfactory receptors represents the first stage in odor discrimination. Here, we report the generation of an expression library containing a large and diverse repertoire of mouse olfactory receptor sequences in the transmembrane II-VII region. From this library, 80 chimeric receptors were tested against 26 odorants after transfection into HEK-293 cells. Three receptors were identified to respond to micromolecular concentrations of carvone, (-) citronellal, and limonene, respectively. We also found that the mouse I7 receptor, unlike the rat I7 receptor, prefers heptanal instead of octanal, as a result of a single valine-to-isoleucine substitution. This finding represents the beginning of a molecular understanding of odorant recognition. The identification, on a large scale, of cognate receptor-odorant interactions should provide insight into olfactory coding mechanisms.


The Journal of Comparative Neurology | 2006

Central projections of melanopsin-expressing retinal ganglion cells in the mouse.

S. Hattar; Monica Kumar; Alexander Park; Patrick Y. Tong; Jonathan Tung; King Wai Yau; David M. Berson

A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau‐lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme β‐galactosidase. Their axons were visualized by X‐gal histochemistry or anti‐β‐galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri‐supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co‐staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical. J. Comp. Neurol. 497:326–349, 2006.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The vitelliform macular dystrophy protein defines a new family of chloride channels.

Hui Sun; Takashi Tsunenari; King Wai Yau; Jeremy Nathans

Vitelliform macular dystrophy (VMD/Best disease; MIM*153700) is an early-onset autosomal dominant disorder in which accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium is associated with a progressive loss of central vision. Bestrophin, the protein product of the VMD gene, has four predicted transmembrane domains. There are multiple bestrophin homologues in the human, Drosophila, and Caenorhabditis elegans genomes, but no function has previously been ascribed to these proteins, and they show no detectable homology to other proteins of known function. Using heterologous expression, we show here that human, Drosophila, and C. elegans bestrophins form oligomeric chloride channels, and that human bestrophin is sensitive to intracellular calcium. Each of 15 missense mutations asscociated with VMD greatly reduces or abolishes the membrane current. Four of these mutant bestrophins were coexpressed with the wild type and each dominantly inhibited the wild-type membrane current, consistent with the dominant nature of the disease. These experiments establish the existence of a new chloride channel family and VMD as a channelopathy.


The Journal of Physiology | 1980

Two components of electrical dark noise in toad retinal rod outer segments.

Denis A. Baylor; G. Matthews; King Wai Yau

1. Physiological noise in the visual transduction mechanism was studied by recording membrane current from single rod outer segments in pieces of isolated toad retina. 2. The inward current in darkness showed spontaneous fluctuations which disappeared during the response to bright light. 3. The dark noise consisted of two components, a continuous fluctuation of rms amplitude about 0.2 pA and occasional discrete events about 1 pA in size. 4. Intervals between discrete events followed the exponential distribution expected of a Poisson process with a mean rate of about one event per 50 sec (20 degrees C). 5. The amplitude and power spectrum of the discrete events resembled those of single photon effects in the same rod, suggesting that discrete events may arise from spontaneous activation of single rhodopsin molecules. 6. The temperature dependence of the mean frequency of occurrence of discrete events gave an activation energy of 22 kcal mole‐1, probably characteristic of thermal isomerization of rhodopsin. 7. The variance of the continuous component of the dark noise rose linearly with the length of the outer segment drawn into the suction electrode, indicating that this component is generated in the outer segment. 8. The power spectrum of a rods continuous noise was usually fitted by the square of a Lorentzian with the same time constant as that of the four first‐order delays in the cells single photon response. The shot effects composing the continuous component thus appear to be shaped by two of four sequential processes in transduction. 9. The variance and spectrum of the continuous noise are interpreted to reflect shot effects about 1/400 the size of a single photon effect occurring at a frequency of 6 x 10(3) sec‐1. 10. The rods flash sensitivity was halved by a steady light to giving about 8 photoisomerizations sec‐1. The much lower mean rate of discrete events indicates that Io in increment sensitivity experiments on individual receptors is not set by thermal activation of rhodopsin. 11. Values of sensitivity and time‐to‐peak flash response collected from many cells in darkness were correlated by the same power law relation obtaining in the presence of backgrounds. The correlation observed would be explained if a single variable controlled both the gain and time scale of several stages of the transduction mechanism in background light and in darkness.


Vision Research | 2007

Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells

Paul D. Gamlin; David H. McDougal; Joel Pokorny; Vivianne C. Smith; King Wai Yau; Dennis M. Dacey

Melanopsin, a novel photopigment, has recently been localized to a population of retinal ganglion cells that display inherent photosensitivity. During continuous light and following light offset, primates are known to exhibit sustained pupilloconstriction responses that resemble closely the photoresponses of intrinsically-photoreceptive ganglion cells. We report that, in the behaving macaque, following pharmacological blockade of conventional photoreceptor signals, significant pupillary responses persist during continuous light and following light offset. These pupil responses display the unique spectral tuning, slow kinetics, and irradiance coding of the sustained, melanopsin-derived ganglion cell photoresponses. We extended our observations to humans by using the sustained pupil response following light offset to document the contribution of these novel ganglion cells to human pupillary responses. Our results indicate that the intrinsic photoresponses of intrinsically-photoreceptive retinal ganglion cells play an important role in the pupillary light reflex and are primarily responsible for the sustained pupilloconstriction that occurs following light offset.


Science | 1994

Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel.

Mingyao Liu; Tsung Yu Chen; Basheer Ahamed; Jess Li; King Wai Yau

Although several ion channels have been reported to be directly modulated by calcium-calmodulin, they have not been conclusively shown to bind calmodulin, nor are the modulatory mechanisms understood. Study of the olfactory cyclic nucleotide-activated cation channel, which is modulated by calcium-calmodulin, indicates that calcium-calmodulin directly binds to a specific domain on the amino terminus of the channel. This binding reduces the effective affinity of the channel for cyclic nucleotides, apparently by acting on channel gating, which is tightly coupled to ligand binding. The data reveal a control mechanism that resembles those underlying the regulation of enzymes by calmodulin. The results also point to the amino-terminal part of the olfactory channel as an element for gating, which may have general significance in the operation of ion channels with similar overall structures.


Nature | 2012

Restoration of vision after transplantation of photoreceptors

Rachael A. Pearson; Amanda C. Barber; Matteo Rizzi; Claire Hippert; Tian Xue; Emma L. West; Yanai Duran; Anthony J. Smith; J. Z. Chuang; S A Sultana Azam; Ulrich F.O. Luhmann; Andrea Benucci; Choon Ho Sung; James W. Bainbridge; Matteo Carandini; King Wai Yau; Jane C. Sowden; Robin R. Ali

Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.


Cell | 2009

Phototransduction Motifs and Variations

King Wai Yau; Roger C. Hardie

Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.

Collaboration


Dive into the King Wai Yau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir J. Kefalov

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dong Gen Luo

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsi Wen Liao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall R. Reed

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Trevor D. Lamb

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge