Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kinga Bujakowska is active.

Publication


Featured researches published by Kinga Bujakowska.


American Journal of Human Genetics | 2009

TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness.

Isabelle Audo; Susanne Kohl; Bart P. Leroy; Francis L. Munier; Xavier Guillonneau; Saddek Mohand-Said; Kinga Bujakowska; Emeline F. Nandrot; Birgit Lorenz; Markus N. Preising; Ulrich Kellner; Agnes B. Renner; Antje Bernd; Aline Antonio; Veselina Moskova-Doumanova; Marie-Elise Lancelot; Charlotte M. Poloschek; Isabelle Drumare; Sabine Defoort-Dhellemmes; Bernd Wissinger; Thierry Léveillard; Christian P. Hamel; Daniel F. Schorderet; Elfride De Baere; Wolfgang Berger; Samuel G. Jacobson; Eberhart Zrenner; José-Alain Sahel; Shomi S. Bhattacharya; Christina Zeitz

Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in approximately 60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.


Orphanet Journal of Rare Diseases | 2012

Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases

Isabelle Audo; Kinga Bujakowska; Thierry Léveillard; Saddek Mohand-Said; Marie-Elise Lancelot; Aurore Germain; Aline Antonio; Christelle Michiels; Jean-Paul Saraiva; Mélanie Letexier; José-Alain Sahel; Shomi S. Bhattacharya; Christina Zeitz

BackgroundInherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked.MethodsTo overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants.ResultsThe phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified.ConclusionsIn summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.


Genetics in Medicine | 2015

Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

Mark Consugar; Daniel Navarro-Gomez; Emily Place; Kinga Bujakowska; Maria E. Sousa; Zoë D. Fonseca-Kelly; Daniel G. Taub; Maria Janessian; Dan Yi Wang; Elizabeth D. Au; Katherine B. Sims; David A. Sweetser; Anne B. Fulton; Qin Liu; Janey L. Wiggs; Xiaowu Gai; Eric A. Pierce

Purpose:Next-generation sequencing–based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques with regard to test accuracy and reproducibility have not been fully defined.Methods:We developed a targeted enrichment and next-generation sequencing approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy, and glaucoma. In preparation for providing this genetic eye disease (GEDi) test on a CLIA–certified basis, we performed experiments to measure the sensitivity, specificity, and reproducibility, as well as the clinical sensitivity, of the test.Results:The GEDi test is highly reproducible and accurate, with sensitivity and specificity of 97.9 and 100%, respectively, for single-nucleotide variant detection. The sensitivity for variant detection was notably better than the 88.3% achieved by whole-exome sequencing using the same metrics, because of better coverage of targeted genes in the GEDi test as compared with a commercially available exome capture set. Prospective testing of 192 patients with inherited retinal degenerations indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%.Conclusion:Based on quantified performance metrics, the data suggest that selective targeted enrichment is preferable to whole-exome sequencing for genetic diagnostic testing.Genet Med 17 4, 253–261.


Human Mutation | 2012

CRB1 mutations in inherited retinal dystrophies

Kinga Bujakowska; Isabelle Audo; Saddek Mohand-Said; Marie-Elise Lancelot; Aline Antonio; Aurore Germain; Thierry Léveillard; Mélanie Letexier; Jean-Paul Saraiva; Christine Lonjou; Wassila Carpentier; José-Alain Sahel; Shomi S. Bhattacharya; Christina Zeitz

Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod–cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para‐arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats‐like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta‐analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination. Hum Mutat 33:306–315, 2012.


American Journal of Human Genetics | 2012

Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness

Isabelle Audo; Kinga Bujakowska; Elise Orhan; Charlotte M. Poloschek; Sabine Defoort-Dhellemmes; Isabelle Drumare; Susanne Kohl; Tien D. Luu; Odile Lecompte; Eberhart Zrenner; Marie-Elise Lancelot; Aline Antonio; Aurore Germain; Christelle Michiels; Claire Audier; Mélanie Letexier; Jean-Paul Saraiva; Bart P. Leroy; Francis L. Munier; Saddek Mohand-Said; Birgit Lorenz; Christoph Friedburg; Markus N. Preising; Ulrich Kellner; Agnes B. Renner; Veselina Moskova-Doumanova; Wolfgang Berger; Bernd Wissinger; Christian P. Hamel; Daniel F. Schorderet

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


American Journal of Human Genetics | 2013

Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness

Christina Zeitz; Samuel G. Jacobson; Christian P. Hamel; Kinga Bujakowska; Marion Neuillé; Elise Orhan; Xavier Zanlonghi; Marie-Elise Lancelot; Christelle Michiels; Sharon B. Schwartz; Béatrice Bocquet; Aline Antonio; Claire Audier; Mélanie Letexier; Jean-Paul Saraiva; Tien D. Luu; Florian Sennlaub; Hoan Nguyen; Olivier Poch; Hélène Dollfus; Odile Lecompte; Susanne Kohl; José-Alain Sahel; Shomi S. Bhattacharya; Isabelle Audo

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Human Molecular Genetics | 2015

Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome

Kinga Bujakowska; Qi Zhang; Anna M. Siemiatkowska; Qin Liu; Emily Place; Marni J. Falk; Mark Consugar; Marie Elise Lancelot; Aline Antonio; Christine Lonjou; Wassila Carpentier; Saddek Mohand-Said; Anneke I. den Hollander; Frans P.M. Cremers; Bart P. Leroy; Xiaowu Gai; José-Alain Sahel; L. Ingeborgh van den Born; Rob W.J. Collin; Christina Zeitz; Isabelle Audo; Eric A. Pierce

Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.


American Journal of Human Genetics | 2007

Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy

Christina Chakarova; Myrto Papaioannou; Hemant Khanna; Irma Lopez; Naushin Waseem; Amna Z. Shah; Torsten Theis; James S. Friedman; Cecilia Maubaret; Kinga Bujakowska; Brotati Veraitch; Mai M. Abd El-Aziz; De Quincy Prescott; Sunil K. Parapuram; Wendy A. Bickmore; Peter M.G. Munro; Andreas Gal; Christian P. Hamel; Valeria Marigo; Chris P. Ponting; Bernd Wissinger; Eberhart Zrenner; Karl Matter; Anand Swaroop; Robert K. Koenekoop; Shomi S. Bhattacharya

We report mutations in the gene for topoisomerase I-binding RS protein (TOPORS) in patients with autosomal dominant retinitis pigmentosa (adRP) linked to chromosome 9p21.1 (locus RP31). A positional-cloning approach, together with the use of bioinformatics, identified TOPORS (comprising three exons and encoding a protein of 1,045 aa) as the gene responsible for adRP. Mutations that include an insertion and a deletion have been identified in two adRP-affected families--one French Canadian and one German family, respectively. Interestingly, a distinct phenotype is noted at the earlier stages of the disease, with an unusual perivascular cuff of retinal pigment epithelium atrophy, which was found surrounding the superior and inferior arcades in the retina. TOPORS is a RING domain-containing E3 ubiquitin ligase and localizes in the nucleus in speckled loci that are associated with promyelocytic leukemia bodies. The ubiquitous nature of TOPORS expression and a lack of mutant protein in patients are highly suggestive of haploinsufficiency, rather than a dominant negative effect, as the molecular mechanism of the disease and make rescue of the clinical phenotype amenable to somatic gene therapy.


PLOS ONE | 2008

The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.

Sallouha Aidoudi; Kinga Bujakowska; Nelly Kieffer; Andreas Bikfalvi

The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.


Investigative Ophthalmology & Visual Science | 2011

Three Gene-Targeted Mouse Models of RNA Splicing Factor RP Show Late-Onset RPE and Retinal Degeneration

John J. Graziotto; Michael H. Farkas; Kinga Bujakowska; Bertrand M. Deramaudt; Qi Zhang; Emeline F. Nandrot; Chris F. Inglehearn; Shomi S. Bhattacharya; Eric A. Pierce

PURPOSE Mutations in genes that produce proteins involved in mRNA splicing, including pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and SNRNP200 are common causes of the late-onset inherited blinding disorder retinitis pigmentosa (RP). It is not known how mutations in these ubiquitously expressed genes lead to retina-specific disease. To investigate the pathogenesis of the RNA splicing factor forms of RP, the authors generated and characterized the retinal phenotypes of Prpf3-T494M, Prpf8-H2309P knockin mice. The retinal ultrastructure of Prpf31-knockout mice was also investigated. METHODS The knockin mice have single codon alterations in their endogenous Prpf3 and Prpf8 genes that mimic the most common disease causing mutations in human PRPF3 and PRPF8. The Prpf31-knockout mice mimic the null alleles that result from the majority of mutations identified in PRPF31 patients. The retinal phenotypes of the gene targeted mice were evaluated by electroretinography (ERG), light, and electron microscopy. RESULTS The RPE cells of heterozygous Prpf3(+/T494M) and Prpf8(+/H2309P) knockin mice exhibited loss of the basal infoldings and vacuolization, with accumulation of amorphous deposits between the RPE and Bruch[b]s membrane at age two years. These changes were more severe in the homozygous mice, and were associated with decreased rod function in the Prpf3-T494M mice. Similar degenerative changes in the RPE were detected in Prpf31(±) mice at one year of age. CONCLUSIONS The finding of similar degenerative changes in RPE cells of all three mouse models suggests that the RPE may be the primary cell type affected in the RNA splicing factor forms of RP. The relatively late-onset phenotype observed in these mice is consistent with the typical adult onset of disease in patients with RP.

Collaboration


Dive into the Kinga Bujakowska's collaboration.

Top Co-Authors

Avatar

Eric A. Pierce

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Shomi S. Bhattacharya

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Place

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart P. Leroy

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Daniel Navarro-Gomez

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Mark Consugar

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Xiaowu Gai

Children's Hospital Los Angeles

View shared research outputs
Researchain Logo
Decentralizing Knowledge