Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kintake Sonoike is active.

Publication


Featured researches published by Kintake Sonoike.


Planta | 1994

The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II

Ichiro Terashima; Sachiko Funayama; Kintake Sonoike

Maximum quantum yields (QY) of photosynthetic electron flows through PSI and PSII were separately assessed in thylakoid membranes isolated from leaves of Cucumis sativus L. (cucumber) that had been chilled in various ways. The QY(PSI) in the thylakoids prepared from the leaves treated at 4° C in moderate light at 220 μmol quanta·m−2·s−1 (400–700 nm) for 5 h, was about 20–30% of that in the thylakoids prepared from untreated leaves, while QY(PSII) decreased, at most, by 20% in response to the same treatment. The decrease in QY(PSI) was observed only when the leaves were chilled at temperatures below 10° C, while such a marked temperature dependency was not observed for the decrease in QY(PSII). In the chilling treatment at 4° C for 5 h, the quantum flux density that was required to induce 50% loss of QY (PSI) was ca. 50 umol quanta·m−2·s−1. When the chilling treatment at 4° C in the light was conducted in an atmosphere of N2, photoinhibition of PSI was largely suppressed, while the damage to PSII was somewhat enhanced. The ferricyanide-oxidised minus ascorbate-reduced difference spectra and the light-induced absorbance changes at 700 nm obtained with the thylakoid suspension, indicated the loss of P700 to extents that corresponded to the decreases in QY(PSI). Accordingly, the decreases in QY(PSI) can largely be attributed to destruction of the PSI reaction centre itself. These results clearly show that, at least in cucumber, a typical chillingsensitive plant, PSI is much more susceptible to aerobic photoinhibition than PSII.


Journal of Bacteriology | 2003

DNA Microarray Analysis of Redox-Responsive Genes in the Genome of the Cyanobacterium Synechocystis sp. Strain PCC 6803

Yukako Hihara; Kintake Sonoike; Minoru Kanehisa; Masahiko Ikeuchi

Whole-genome DNA microarrays were used to evaluate the effect of the redox state of the photosynthetic electron transport chain on gene expression in Synechocystis sp. strain PCC 6803. Two specific inhibitors of electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), were added to the cultures, and changes in accumulation of transcripts were examined. About 140 genes were highlighted as reproducibly affected by the change in the redox state of the photosynthetic electron transport chain. It was shown that some stress-responsive genes but not photosynthetic genes were under the control of the redox state of the plastoquinone pool in Synechocystis sp. strain PCC 6803.


Planta | 1994

Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L

Kintake Sonoike; Ichiro Terashima

It was recently shown that the site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is Photosystem I (PSI), not PSII (I. Terashima et al. 1994, Planta 193, 300–306). In the present study, the mechanisms of this PSI photoinhibition in vivo were examined. By lowering the photon flux density during the photoinhibitory treatment of leaves at 4°C for 5 h to less than 100 μmol·m−2s−1, we were able to separate the steps of the destruction of the electron-transfer components. Although P-700, the reaction-center chlorophyll, was almost intact in this low-light treatment, the quantum yield of the electron transfer through PSI and photochemically induced absorption change at 701 nm were markedly inhibited. This, along with the results from the measurements of the light-induced absorption changes in the presence of various concentrations of methyl viologen, an artificial electron acceptor, indicates that the component on the acceptor side of the PSI, A1 or Fx, is the first site of inactivation. When the photon flux density during the treatment was increased to 220 μmol·m−2s−1, the destruction of P-700 itself was also observed. Furthermore, the partial degradation of the chlorophyll-binding large subunits was observed in photoinhibited leaves. This degradation of the subunits was not detected when the treatment was carried out under nitrogen atmosphere, the condition in which the electron transfer is not inhibited. Thus, the photoinhibitory processes in the reaction center of PSI go through three steps, the inactivation of the acceptor side, the destruction of the reaction-center chlorophyll and the degradation of the reaction center subunit(s). The similarities and the differences between the mechanisms of PSI photoinhibition and those of PSII photoinhibition are discussed.


FEBS Letters | 1995

Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures

Kintake Sonoike; Ichiro Terashima; Masayao Iwaki; Shigeru Itoh

The activity of photosystem (PS) I in cucumber leaves was selectively inhibited by weak illumination at chilling temperatures with almost no loss of P‐700 content and PSII activity. The sites of inactivation in the reducing side of PSI were determined by EPR and flash photolysis. Measurement by EPR showed the destruction of iron‐sulfur centers, FX, FA and FB,in parallel with the loss of quantum yield of electron transfer from diaminodurene to NADP+. Flash photolysis showed the increases in the triplet states of P‐700 and antenna pigments, along with the decrease in the electron transfer from P‐700 to FA/FB. This indicates the increase in the charge recombination between P‐700+ and A0 −. It is concluded that weak‐light treatment of cucumber leaves at chilling temperature destroys FX, FA and FB and possibly A1. This gives the molecular basis for the mechanism of selective PSI photodamage that was recently reported [Sonoike and Terashima (1994) Planta 194, 287–293].


Plant Science | 1996

Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I : possible involvement of active oxygen species

Kintake Sonoike

Specific degradation of psaB gene product, one of the two large subunits of photosystem I (PS I) reaction-center, was observed during photoinhibition of PS I. In the in vitro photoinhibition using spinach thylakoid membranes, the degradation of psaB gene product gave rise to fragments of 51 kDa and 45 kDa. n-Propyl gallate, a scavenger of active oxygen species, suppressed the generation of these fragments. Addition of methyl viologen, which protects PS I from photoinhibition but increases the production of superoxide, suppressed the generation of 51 kDa fragment but increased the generation of 45 kDa fragment. It was concluded that interaction of active oxygen species with reduced electron acceptor in PS I results in inactivation of PS I and in generation of 51 kDa fragment. On the other hand, 45 kDa fragment was generated solely by the presence of active oxygen species independent of the inhibition of PS I activity.


Journal of Plant Research | 1998

Various aspects of inhibition of photosynthesis under light/chilling stress: "Photoinhibition at chilling temperatures" versus "chilling damage in the light"

Kintake Sonoike

At chilling temperatures, plants suffer damage to photosynthesis. The sites and the mechanisms involved in this damage differ under different chilling conditions. The current status of our understanding of this damage is reviewed, and how chilling temperatures affect photosynthesis is discussed with emphasis on the role of light and the phase separation of membrane lipids.


Photosynthesis Research | 1997

The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition

Kintake Sonoike; Masaharu Kamo; Yukako Hihara; Tetsuo Hiyama; Isao Enami

The psaB gene product (PsaB protein), one of the reaction center subunits of Photosystem I (PS I), was specifically degraded by light illumination of spinach thylakoid membranes. The degradation of the protein yielded N-terminal fragments of molecular mass 51 kDa and 45 kDa. The formation of the 51 kDa fragment was i) partially suppressed by the addition of phenylmethylsulfonyl fluoride or 3,4-dichloroisocoumarin, which are inhibitors of serine proteases, and ii) enhanced in the presence of hydrogen peroxide during photoinhibitory treatment, but iii) not detected following hydrogen peroxide treatment in the dark. These results suggest that the hydroxyl radical produced at the reduced iron-sulfur centers in PS I triggers the conformational change of the PS I complex, which allows access of a serine-type protease to PsaB. This results in the formation of the 51 kDa N-terminal fragment, presumably by cleavage on the loop exposed to the stromal side, between putative helices 8 and 9. On the other hand, the formation of the 45 kDa fragment, which was enhanced in the presence of methyl viologen but did not accompany the photoinhibition of PS I, was not affected by the addition of hydrogen peroxide or protease inhibitors. Another fragment of 18 kDa was identified as a C-terminal counterpart of the 45 kDa fragment. N-terminal sequence analysis of the 18 kDa fragment revealed that the cleavage occurred between Ala500 and Val501 on the loop exposed to the lumenal side, between putative helices 7 and 8 of the PsaB protein.


Biochimica et Biophysica Acta | 1991

Total immobilization of the extrinsic 33 kDa protein in spinach Photosystem II membrane preparations. Protein stoichiometry and stabilization of oxygen evolution

Isao Enami; Mari Kaneko; Nobuhito Kitamura; Hiroyuki Koike; Kintake Sonoike; Yorinao Inoue; Sakae Katoh

(1) Treatment of oxygen-evolving Photosystem II membrane fragments (PS II membranes) with a zero-length crosslinker, l-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) led to immobilization of all the extrinsic 33 kDa protein molecules without any significant effects on the oxygen-evolving activity and oscillation patterns of flash-induced oxygen evolution and thermoluminescence B band. (2) With increasing concentration of EDC, the chlorophyll-binding 47 kDa protein decreased in parallel with the 33 kDa protein, yielding a crosslinked product consisting of one each of the two proteins. The results, which indicate that the two proteins are present in equimolar amounts in PS II membranes, are consistent with the stoichiometry of one copy of the 33 kDa protein per PS II unit. (3) The total immobilization of the 33 kDa protein stabilized 40 to 60% of the oxygen-evolving activity against urea/NaCl−, CaCl2− and MgCl2-wash, which otherwise solubilize the three extrinsic proteins and strongly inactivate oxygen evolution. The result implies that extraction of the extrinsic proteins may not be the sole cause of the inactivation of oxygen evolution by these treatments. (4) The crosslinking of the 33 kDa protein with EDC had no protecting effect against Tris-, NH2OH- and pH 9.0-treatments. However, the stability of oxygen evolution at alkaline pH levels was slightly but significantly increased by treatment of PS II membranes with dithiobis(suc-cinimidylpropionate), which specifically modifies amino groups.


Journal of Photochemistry and Photobiology B-biology | 1999

The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II

Kintake Sonoike

Abstract The role of chilling temperatures on photoinhibition of photosystems I and II (PSI and PSII) under weak light has been examined in cucumber, a chilling-sensitive plant. The extent of PSII photoinhibition, determined by pulse-modulated fluorescence in vivo, is closely related to the redox state of the PSII electron acceptor QA, measured as a fluorescence parameter, 1 − qp. On the other hand, the extent of PSI photoinhibition, which is only observed in chilling-sensitive plants at chilling temperatures, cannot be related to the redox state of QA, suggesting that the underlying mechanism is different from that of PSII photoinhibition. Chilling treatment at low photon flux densities is found to enhance cyclic electron flow around PSI. Both PSI photoinhibition and enhanced cyclic electron flow show similar temperature dependence, with the threshold temperature at 10°C.


Planta | 1999

Role of pyrenoids in the CO2-concentrating mechanism: Comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas (Volvocales)

Eiko Morita; Toshihiko Abe; Mikio Tsuzuki; Shoko Fujiwara; Norihiro Sato; Aiko Hirata; Kintake Sonoike; Hisayoshi Nozaki

Abstract. The morphology of the pyrenoid and the physiology of the CO2-concentrating mechanism (CCM) were investigated in Chlamydomonas (Cd.) mutabilis Gerloff UTEX 578, Cd. radiata Deason et Bold UTEX 966, Cd. augustae Skuja UTEX 1969, Cd. macrostellata Lund SAG 72.81, Cd. bipapillata Bourrelly SAG 11-47, and Chloromonas (Cr.) insignis Gerloff et Ettl NIES-447, all of which are closely related phylogenetically to the pyrenoid-less strains of Chloromonas. In the chloroplasts of Cd. mutabilis UTEX 578, Cd. radiata UTEX 966, Cd. augustae UTEX 1969, and Cd. macrostellata SAG 72.81, a typical, spheroidal, electron-dense pyrenoid matrix surrounded by starch granules was present, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) molecules were highly concentrated in the pyrenoid matrix. On the other hand, while the pyrenoid matrix of Cr. insignis NIES-447 was electron-dense that of Cd. bipapillata SAG 11-47 was not, and neither was surrounded by starch granules. The pyrenoid matrices of these two species exhibited a higher concentration of Rubisco molecules than the thylakoid region (thylakoid and stroma) of the chloroplasts; however, the densities of Rubisco molecules in these pyrenoid matrices were low compared with those of the other four Chlamydomonas strains examined in this study and that of Cd. reinhardtii Dangeard. In all six strains examined, the presence of the CCM was indicated by relatively high photosynthetic affinities for CO2 (low values of K0.5(CO2)). However, differences in the inorganic carbon (Ci) pools were recognized in relation to the differences in pyrenoid morphology among the strains. In the typical pyrenoid-containing strains. Cd. mutabilis UTEX 578 and Cd. radiata UTEX 966, the ratio of internal to external inorganic carbon was about 20, while in Cr. insignis NIES-447 and Cd. bipapillata SAG 11-47 the ratio was only 2–3 similar to the two pyrenoid-less, CCM-containing strains of Chloromonas previously examined (E. Morita et al., 1998, Planta 204: 269–276). It is thus speculated that the presence of typical pyrenoids with a high concentration of Rubisco molecules is related to the formation of large Ci pools in the CCM. Detailed phylogenetic relationships among these Chlamydomonas/Chloromonas strains and the pyrenoid-less Chloromonas strains previously investigated were inferred based on the sequence of rbcL, the gene for the large subunit of Rubisco. Two monophyletic groups were resolved with high bootstrap values. Based on the tree topology resolved, it was inferred that loss of the typical pyrenoids accompanied by a decrease in intracellular Ci pools might have taken place independently in the two groups.

Collaboration


Dive into the Kintake Sonoike's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikio Tsuzuki

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge