Kinya Ohta
Nagoya City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kinya Ohta.
Journal of Biochemistry | 2009
Syunsuke Yamamoto; Katsuhisa Inoue; Kinya Ohta; Rui Fukatsu; Jun-ya Maeda; Yukihiro Yoshida; Hiroaki Yuasa
We have newly identified rat riboflavin transporter 2 (rRFT2) and its human orthologue (hRFT2), and carried out detailed functional characterization of rRFT2. The mRNA of rRFT2 was highly expressed in jejunum and ileum. When transiently expressed in human embryonic kidney (HEK) 293 cells, rRFT2 could transport riboflavin efficiently. Riboflavin transport mediated by rRFT2 was Na(+)-independent but moderately pH-sensitive, being more efficient in acidic conditions than in neutral and basic conditions. Kinetic analysis indicated that rRFT2-mediated riboflavin transport was saturable with a Michaelis constant (K(m)) of 0.21 microM. Furthermore, it was specifically and strongly inhibited by lumiflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), and to a lesser extent by amiloride. Such ability to transport riboflavin in a specific manner, together with its high expression in the small intestine, indicates that RFT2 may play a role in the intestinal absorption of riboflavin.
Drug Metabolism and Disposition | 2009
Soichiro Matsushima; Kazuya Maeda; Katsuhisa Inoue; Kinya Ohta; Hiroaki Yuasa; Tsunenori Kondo; Hideki Nakayama; Shigeru Horita; Hiroyuki Kusuhara; Yuichi Sugiyama
Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The present study examined the molecular mechanism of these DDIs. Saturable uptake of FEX was observed in human kidney slices, with Km and Vmax values of 157 ± 7 μM and 418 ± 16 nmol/15 min/g kidney, respectively. Cimetidine only slightly inhibited its uptake even at 100 μM, far greater than its clinically relevant concentration, whereas 10 μM probenecid markedly inhibited its uptake. As candidate transporters for the luminal efflux of FEX, we focused on human multidrug and toxin extrusions MATE1 (SLC47A1) and MATE2-K (SLC47A2). Saturable uptake of FEX could be observed in human embryonic kidney 293 cells expressing human MATE1 (hMATE1), whereas hMATE2-K-specific uptake of FEX was too small to conduct its further kinetic analysis. The hMATE1-mediated uptake clearance of FEX was inhibited by cimetidine in a concentration-dependent manner, and it was decreased to 60% of the control value in the presence of 3 μM cimetidine. Taken together, our results suggest that the DDI of FEX with probenecid can be explained by the inhibition of renal uptake mediated by hOAT3, whereas the DDI with cimetidine is mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than the inhibition of its renal uptake process.
Journal of Pharmacology and Experimental Therapeutics | 2007
Yasuhiro Nakai; Katsuhisa Inoue; Naoki Abe; Mai Hatakeyama; Kinya Ohta; Masaki Otagiri; Yayoi Hayashi; Hiroaki Yuasa
The functional characteristics of human proton coupled folate transporter (hPCFT)/heme carrier protein (HCP) 1 were investigated. hPCFT/HCP1 expressed transiently in human embryonic kidney 293 cells mediated the transport of folate at an acidic extracellular pH of 5.5 in a manner independent of Na+ and insensitive to membrane potential, but its transport activity was absent at near-neutral pH. Folate transport mediated by hPCFT/hHCP1 at pH 5.5 was saturable with a Km of 1.67 μM and extensively inhibited by reduced folates, such as folinate, 5-methyltetrahydrofolate, and methotrexate (MTX). Sulfobro-mophthalein and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid were also found to be potent inhibitors of hPCFT/hHCP1, but hemin was found to exhibit only minimal inhibitory effect. When expressed stably as a protein fused with green fluorescent protein (GFP-hPCFT/HCP1) in MDCKII cells, GFP-hPCFT/HCP1 was mainly localized at the apical membrane, and the cellular accumulation of MTX was higher from the apical side than from the basal side. These functional features of hPCFT/HCP1 are consistent with those of the well characterized carrier-mediated folate transport system in the small intestine, suggesting that hPCFT/HCP1 is responsible for the intestinal absorption of folate and also MTX. We also found that sulfasalazine is a potent inhibitor of hPCFT/HCP1, which would interfere with the intestinal absorption of MTX when coadministered in therapy for rheumatoid arthritis as well as folate.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2008
Katsuhisa Inoue; Yasuhiro Nakai; Sayaka Ueda; Shunsuke Kamigaso; Kinya Ohta; Mai Hatakeyama; Yayoi Hayashi; Masaki Otagiri; Hiroaki Yuasa
Proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1) has recently been identified as a transporter that mediates the translocation of folates across the cellular membrane by a proton-coupled mechanism and suggested to be the possible molecular entity of the carrier-mediated intestinal folate transport system. To further clarify its role in intestinal folate transport, we examined the functional characteristics of rat PCFT/HCP1 (rPCFT/HCP1) expressed in Xenopus laevis oocytes and compared with those of the carrier-mediated folate transport system in the rat small intestine evaluated by using the everted tissue sacs. rPCFT/HCP1 was demonstrated to transport folate and methotrexate more efficiently at lower acidic pH and, as evaluated at pH 5.5, with smaller Michaelis constant (K(m)) for the former (2.4 microM) than for the latter (5.7 microM), indicating its characteristic as a proton-coupled folate transporter that favors folate than methotrexate as substrate. rPCFT/HCP1-mediated folate transport was found to be inhibited by several but limited anionic compounds, such as sulfobromophthalein and sulfasalazine. All these characteristics of rPCFT/HCP1 were in agreement with those of carrier-mediated intestinal folate transport system, of which the K(m) values were 1.2 and 5.8 microM for folate and methotrexate, respectively, in the rat small intestine. Furthermore, the distribution profile of the folate transport system activity along the intestinal tract was in agreement with that of rPCFT/HCP1 mRNA. This study is the first to clone rPCFT/HCP1, and we successfully provided several lines of evidence that indicate its role as the molecular entity of the intestinal folate transport system.
Drug Metabolism and Disposition | 2006
Kinya Ohta; Katsuhisa Inoue; Yayoi Hayashi; Hiroaki Yuasa
We have cloned and functionally characterized the rat ortholog of multidrug and toxin extrusion type transporter 1 (rMATE1). The mRNA of rMATE1 was strongly expressed in kidney and detectable in the various tissues such as brain, stomach, colon, lung, liver, spleen, skeletal muscle, and prostate. When stably expressed in HEK293 cells, rMATE1 could mediate the transport of tetraethylammonium (TEA) and cimetidine under the condition where the membrane potential was disrupted by a high concentration of potassium ion and intracellular pH was reduced by NH4Cl pretreatment. When extracellular pH was changed from 5.5 to 8.5, the transport of TEA by rMATE1 was greatest at pH 7.5. Kinetic analyses showed that the transports of TEA and cimetidine mediated by rMATE1 were both saturable with a Km of 260 ± 10 and 3.01 ± 0.21 μM, respectively. It was found that cimetidine is the most potent inhibitor of rMATE1, and many other organic cations, such as 1-methyl-4-phenylpyridinium, amiloride, imipramine, and quinidine, are also effective as inhibitors. Pretreatment of the cells expressing rMATE1 with p-chloromercuribenzene sulfonate significantly reduced TEA transport, but this effect was totally reversed by subsequent treatment with dithiothreitol. These results indicate that the functional nature of rMATE1 is consistent with that of the hypothetical organic cation/H+ antiporter system in the brush-border membrane of the renal tubular epithelial cells. Accordingly, these results suggest that rMATE1 is an electroneutral and multispecific organic cation transporter energized by the trans-proton gradient, and plays a physiological role in renal secretion of organic cations, including clinically used cationic drugs.
Journal of Nutrition | 2010
Misaki Fujimura; Syunsuke Yamamoto; Tomoaki Murata; Tomoya Yasujima; Katsuhisa Inoue; Kinya Ohta; Hiroaki Yuasa
Riboflavin transporter (RFT) 2 has recently been identified as a transporter that may be, mainly based on the functional characteristics of its rat ortholog (rRFT2), involved in the intestinal absorption of riboflavin. The present study was conducted to further examine such a possible role of RFT2, focusing on the functional characteristics of its human ortholog (hRFT2) and the response of rRFT2 expression in the small intestine to deprivation of dietary riboflavin. When transiently expressed in human embryonic kidney 293 cells, hRFT2 could transport riboflavin efficiently in a pH-sensitive manner, favoring acidic pH and without requiring Na(+). Riboflavin transport by hRFT2 was saturable with a Michaelis constant of 0.77 μmol/L at pH 6.0, and inhibited by some riboflavin derivatives, such as lumiflavin. It was also inhibited, to a lesser extent, by some cationic compounds, such as ethidium. Thus, hRFT2 was suggested to, together with a finding that its mRNA is highly expressed in the small intestine, have characteristics as an intestinal RFT. Furthermore, feeding rats a riboflavin-deficient diet caused an upregulation of the expression of rRFT2 mRNA in the small intestine, presumably as an adaptive response to enhance riboflavin absorption, which would involve rRFT2, and its apically localized characteristic was suggested by the observation of rRFT2 tagged with green fluorescent protein stably expressed in polarized Madin-Darby canine kidney II cells. All these results combined indicate that RFT2 is a transporter involved in the epithelial uptake of riboflavin in the small intestine for its nutritional utilization.
Journal of Biological Chemistry | 2010
Syunsuke Yamamoto; Katsuhisa Inoue; Tomoaki Murata; Syunsuke Kamigaso; Tomoya Yasujima; Jun-ya Maeda; Yukihiro Yoshida; Kinya Ohta; Hiroaki Yuasa
Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 μm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use.
Journal of Pharmacology and Experimental Therapeutics | 2009
Kinya Ohta; Yuichiro Imamura; Noriko Okudaira; Ryou Atsumi; Katsuhisa Inoue; Hiroaki Yuasa
Many fluoroquinolones are mainly eliminated by urinary excretion, in which tubular secretion by carrier-mediated transport systems has been suggested to be involved. In the present study, we examined the possibility that multidrug and toxin extrusion protein (MATE) 1, which is abundantly expressed in the kidney, might be involved in that, using rat MATE (rMATE) 1 expressed in MDCKII cells. It was found that rMATE1 can transport fluoroquinolones such as ciprofloxacin, enoxacin, gatifloxacin, levofloxacin, norfloxacin (NFX), pazufloxacin, and tosufloxacin. Although rMATE1 has been known as an apical organic cation/H+ antiporter, detailed investigation of rMATE1-mediated uptake of NFX has revealed that it is not sensitive to intracellular acidification by treatments using NH4Cl or nigericin, suggesting that the transmembrane proton gradient is not involved in its transport as a driving force. However, it was dependent on extracellular pH, being greatest at pH 7.0 and smaller at both acidic and basic pH in agreement with the profile of zwitterionization of NFX. The basal-to-apical transcellular transport of NFX in rMATE1-expressing MDCKII cells was greater than that in mock cells and insensitive to acidification of the apical medium, demonstrating proton gradient-independent functionality of rMATE1 in NFX efflux. Finally, rMATE1-mediated NFX uptake at pH 7.4 was saturable with the Michaelis constant of 55.3 μM and inhibited by cationic compounds, such as TEA and cimetidine. These results suggest that rMATE1 mediates the transport of NFX by a facilitative manner. MATE1 may play a key role in the renal tubular secretion of fluoroquinolones.
Journal of Pharmacy and Pharmaceutical Sciences | 2010
Kinya Ohta; Katsuhisa Inoue; Tomoya Yasujima; Munenori Ishimaru; Hiroaki Yuasa
PURPOSE Human multidrug and toxin extrusion protein 1 (hMATE1) and hMATE2-K are organic cation/H+ antiporters that have recently been identified and suggested to be involved in the renal brush border secretion of various organic cations. Information about functional characteristics of them has been accumulating, but still insufficient to fully understand their functions and respective roles. The present study was conducted to help clarify them. METHODS The cDNA of hMATE1 was isolated from human brain cDNA by RT-PCR and hMATE2-K cDNA was from human kidney cDNA. HEK293 cells were stably transfected with hMATE1 and hMATE2-K, and the cellular uptakes of [3H]cimetidine and [14C]tetraethylammonium (TEA) were evaluated. RESULTS It was first found that both hMATE1 and hMATE2-K can transport cimetidine with high affinities, indicated by small Michaelis constants of 8.00 mM and 18.18 mM, respectively. These were much smaller than those for TEA (366 mM and 375 mM, respectively, for hMATE1 and hMATE2-K). Subsequent investigation using cimetidine as a probe substrate into the profiles of inhibition of the two hMATEs by various compounds indicated that they are similar in principle but different to some extent in substrate recognition, reflecting the modest differences in amino acid sequences between them. In fact, cimetidine transport by hMATE1 was correlated to that by hMATE2-K, which is 65% similar to hMATE1, but not as good as to that by rat MATE1, which is 86% similar. CONCLUSIONS Cimetidine was demonstrated to be a high affinity substrate of both hMATEs. Subsequent evaluation of the inhibition of hMATEs by various compounds indicated no major difference in function or role between hMATE1 and hMATE2-K.
Drug Metabolism and Disposition | 2010
Tomoya Yasujima; Kinya Ohta; Katsuhisa Inoue; Munenori Ishimaru; Hiroaki Yuasa
Multidrug and toxin extrusion protein 1 (MATE1) and MATE2-K are organic cation/H+ antiporters that have recently been identified and suggested to be responsible for the brush border secretory transport of many cationic drugs in renal tubules. We here report our finding that 4′,6-diamidino-2-phenylindole (DAPI) can be used as a probe substrate for rapid assays of the functionality of the human MATEs, hMATE1, and hMATE2-K, by taking advantage of its fluorescent nature. The specific cellular uptakes of DAPI by cloned hMATE1 and hMATE2-K, which were assessed by fluorescence intensity, were found to be rapid and saturable with the Michaelis constants of 1.13 and 3.16 μM, respectively, indicating that DAPI is a good substrate of both hMATEs. It was found that many organic cations inhibit the specific uptake of DAPI by hMATE1 and hMATE2-K, and the extents of inhibition are in good correlation with those of inhibition of the specific uptake of [3H]cimetidine as a typical substrate, indicating comparable performances of both substrates as probes in identifying inhibitors. Thus, DAPI can be an alternative probe substrate that enables fluorometric rapid assays of the functionality of both hMATEs. It was also found that the other major renal organic cation transporters, human organic cation transporter 2 (hOCT2), hOCT3, human novel organic cation transporter 1 (hOCTN1), and hOCTN2, cannot transport DAPI, although hOCT1, which is mainly expressed in the liver, can. Therefore, the DAPI uptake assay can be a method specific to the hMATEs among organic cation transporters in the human kidney.