Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kip Bodi is active.

Publication


Featured researches published by Kip Bodi.


Nature Methods | 2009

Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms

Tim van Opijnen; Kip Bodi; Andrew Camilli

Biological pathways are structured in complex networks of interacting genes. Solving the architecture of such networks may provide valuable information, such as how microorganisms cause disease. Here we present a method (Tn-seq) for accurately determining quantitative genetic interactions on a genome-wide scale in microorganisms. Tn-seq is based on the assembly of a saturated Mariner transposon insertion library. After library selection, changes in frequency of each insertion mutant are determined by sequencing the flanking regions en masse. These changes are used to calculate each mutants fitness. Using this approach, we determined fitness for each gene of Streptococcus pneumoniae, a causative agent of pneumonia and meningitis. A genome-wide screen for genetic interactions of five query genes identified both alleviating and aggravating interactions that could be divided into seven distinct categories. Owing to the wide activity of the Mariner transposon, Tn-seq has the potential to contribute to the exploration of complex pathways across many different species.


Journal of Bacteriology | 2010

Direct Targets of CodY in Staphylococcus aureus

Charlotte D. Majerczyk; Paul M. Dunman; Thanh T. Luong; Chia Y. Lee; Marat R. Sadykov; Greg A. Somerville; Kip Bodi; Abraham L. Sonenshein

More than 200 direct CodY target genes in Staphylococcus aureus were identified by genome-wide analysis of in vitro DNA binding. This analysis, which was confirmed for some genes by DNase I footprinting assays, revealed that CodY is a direct regulator of numerous transcription units associated with amino acid biosynthesis, transport of macromolecules, and virulence. The virulence genes regulated by CodY fell into three groups. One group was dependent on the Agr system for its expression; these genes were indirectly regulated by CodY through its repression of the agr locus. A second group was regulated directly by CodY. The third group, which includes genes for alpha-toxin and capsule synthesis, was regulated by CodY in two ways, i.e., by direct repression and by repression of the agr locus. Since S. aureus CodY was activated in vitro by the branched chain amino acids and GTP, CodY appears to link changes in intracellular metabolite pools with the induction of numerous adaptive responses, including virulence.


Mbio | 2012

Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States

Veronica N. Kos; Christopher A. Desjardins; Allison D. Griggs; Gustavo Maia Cerqueira; Andries J. van Tonder; Matthew T. G. Holden; Paul A. Godfrey; Kelli L. Palmer; Kip Bodi; Emmanuel F. Mongodin; Jennifer R. Wortman; Michael Feldgarden; Trevor D. Lawley; Steven R. Gill; Brian J. Haas; Bruce W. Birren; Michael S. Gilmore

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection. Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.


Journal of biomolecular techniques | 2013

Comparison of Commercially Available Target Enrichment Methods for Next-Generation Sequencing

Kip Bodi; Anoja Perera; P.S. Adams; D. Bintzler; Ken Dewar; Deborah S. Grove; J. Kieleczawa; Robert H. Lyons; Thomas A. Neubert; A.C. Noll; S. Singh; Robert Steen; Michael Zianni

Isolating high-priority segments of genomes greatly enhances the efficiency of next-generation sequencing (NGS) by allowing researchers to focus on their regions of interest. For the 2010-11 DNA Sequencing Research Group (DSRG) study, we compared outcomes from two leading companies, Agilent Technologies (Santa Clara, CA, USA) and Roche NimbleGen (Madison, WI, USA), which offer custom-targeted genomic enrichment methods. Both companies were provided with the same genomic sample and challenged to capture identical genomic locations for DNA NGS. The target region totaled 3.5 Mb and included 31 individual genes and a 2-Mb contiguous interval. Each company was asked to design its best assay, perform the capture in replicates, and return the captured material to the DSRG-participating laboratories. Sequencing was performed in two different laboratories on Genome Analyzer IIx systems (Illumina, San Diego, CA, USA). Sequencing data were analyzed for sensitivity, specificity, and coverage of the desired regions. The success of the enrichment was highly dependent on the design of the capture probes. Overall, coverage variability was higher for the Agilent samples. As variant discovery is the ultimate goal for a typical targeted sequencing project, we compared samples for their ability to sequence single-nucleotide polymorphisms (SNPs) as a test of the ability to capture both chromosomes from the sample. In the targeted regions, we detected 2546 SNPs with the NimbleGen samples and 2071 with Agilents. When limited to the regions that both companies included as baits, the number of SNPs was ∼1000 for each, with Agilent and NimbleGen finding a small number of unique SNPs not found by the other.


PLOS Pathogens | 2011

A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae.

Evan S. Bradley; Kip Bodi; Ayman M. Ismail; Andrew Camilli

Small RNAs (sRNAs) are becoming increasingly recognized as important regulators in bacteria. To investigate the contribution of sRNA mediated regulation to virulence in Vibrio cholerae, we performed high throughput sequencing of cDNA generated from sRNA transcripts isolated from a strain ectopically expressing ToxT, the major transcriptional regulator within the virulence gene regulon. We compared this data set with ToxT binding sites determined by pulldown and deep sequencing to identify sRNA promoters directly controlled by ToxT. Analysis of the resulting transcripts with ToxT binding sites in cis revealed two sRNAs within the Vibrio Pathogenicity Island. When deletions of these sRNAs were made and the resulting strains were competed against the parental strain in the infant mouse model of V. cholerae colonization, one, TarB, displayed a variable colonization phenotype dependent on its physiological state at the time of inoculation. We identified a target of TarB as the mRNA for the secreted colonization factor, TcpF. We verified negative regulation of TcpF expression by TarB and, using point mutations that disrupted interaction between TarB and tpcF mRNA, showed that loss of this negative regulation was primarily responsible for the colonization phenotype observed in the TarB deletion mutant.


Mbio | 2011

Evidence of a Dominant Lineage of Vibrio cholerae-Specific Lytic Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh

Kimberley D. Seed; Kip Bodi; Andrew M. Kropinski; Hans-Wolfgang Ackermann; Stephen B. Calderwood; Firdausi Qadri; Andrew Camilli

ABSTRACT Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1. IMPORTANCE The severe diarrheal disease cholera is caused by the bacterium Vibrio cholerae, which can be transmitted to humans from the aquatic environment. Factors that affect V. cholerae in the environment can impact the occurrence of cholera outbreaks; one of these factors is thought to be the presence of bacterial viruses, or bacteriophages. Bacteriophages that prey on V. cholerae in the environment, and potentially in humans, have not been extensively genetically characterized. Here, we isolated and sequenced the genomes of bacteriophages from cholera patient stool samples collected over a 10-year period in Dhaka, Bangladesh, a region that suffers from regular cholera outbreaks. We describe a unique bacteriophage present in all samples, infer its evolution by sequencing multiple isolates from different patients over time, and identify the host receptor that shows that the bacteriophage specifically predates the serogroup of V. cholerae responsible for the majority of disease occurrences. The severe diarrheal disease cholera is caused by the bacterium Vibrio cholerae, which can be transmitted to humans from the aquatic environment. Factors that affect V. cholerae in the environment can impact the occurrence of cholera outbreaks; one of these factors is thought to be the presence of bacterial viruses, or bacteriophages. Bacteriophages that prey on V. cholerae in the environment, and potentially in humans, have not been extensively genetically characterized. Here, we isolated and sequenced the genomes of bacteriophages from cholera patient stool samples collected over a 10-year period in Dhaka, Bangladesh, a region that suffers from regular cholera outbreaks. We describe a unique bacteriophage present in all samples, infer its evolution by sequencing multiple isolates from different patients over time, and identify the host receptor that shows that the bacteriophage specifically predates the serogroup of V. cholerae responsible for the majority of disease occurrences.


Orphanet Journal of Rare Diseases | 2013

A core microbiome associated with the peritoneal tumors of pseudomyxoma peritonei

Jeremy J. Gilbreath; Cristina Semino-Mora; Christopher J. Friedline; Hui Liu; Kip Bodi; Thomas J. McAvoy; Jennifer Francis; Carol Nieroda; Armando Sardi; Andre Dubois; David W. Lazinski; Andrew Camilli; Traci L. Testerman; D. Scott Merrell

BackgroundPseudomyxoma peritonei (PMP) is a malignancy characterized by dissemination of mucus-secreting cells throughout the peritoneum. This disease is associated with significant morbidity and mortality and despite effective treatment options for early-stage disease, patients with PMP often relapse. Thus, there is a need for additional treatment options to reduce relapse rate and increase long-term survival. A previous study identified the presence of both typed and non-culturable bacteria associated with PMP tissue and determined that increased bacterial density was associated with more severe disease. These findings highlighted the possible role for bacteria in PMP disease.MethodsTo more clearly define the bacterial communities associated with PMP disease, we employed a sequenced-based analysis to profile the bacterial populations found in PMP tumor and mucin tissue in 11 patients. Sequencing data were confirmed by in situ hybridization at multiple taxonomic depths and by culturing. A pilot clinical study was initiated to determine whether the addition of antibiotic therapy affected PMP patient outcome.Main resultsWe determined that the types of bacteria present are highly conserved in all PMP patients; the dominant phyla are the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. A core set of taxon-specific sequences were found in all 11 patients; many of these sequences were classified into taxonomic groups that also contain known human pathogens. In situ hybridization directly confirmed the presence of bacteria in PMP at multiple taxonomic depths and supported our sequence-based analysis. Furthermore, culturing of PMP tissue samples allowed us to isolate 11 different bacterial strains from eight independent patients, and in vitro analysis of subset of these isolates suggests that at least some of these strains may interact with the PMP-associated mucin MUC2. Finally, we provide evidence suggesting that targeting these bacteria with antibiotic treatment may increase the survival of PMP patients.ConclusionsUsing 16S amplicon-based sequencing, direct in situ hybridization analysis and culturing methods, we have identified numerous bacterial taxa that are consistently present in all PMP patients tested. Combined with data from a pilot clinical study, these data support the hypothesis that adding antimicrobials to the standard PMP treatment could improve PMP patient survival.


Infection, Genetics and Evolution | 2012

Comparative genome analysis of two Cryptosporidium parvum isolates with different host range

Giovanni Widmer; Yongsun Lee; Paul Hunt; Axel Martinelli; Max Tolkoff; Kip Bodi


Archive | 2013

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A core microbiome associated with the peritoneal tumors of pseudomyxoma peritonei

Jeremy J. Gilbreath; Cristina Semino-Mora; Christopher J. Friedline; Hui Liu; Kip Bodi; Thomas J. McAvoy; Jennifer Francis; Carol Nieroda; David W. Lazinski; Andrew Camilli; D. Scott Merrell


Journal of biomolecular techniques | 2011

Comparison of Custom Target Enrichment Methods: Agilent vs. Nimblegen

Kip Bodi; P.S. Adams; D. Bintzler; Ken Dewar; Deborah S. Grove; Jan Kieleczawa; Robert H. Lyons; Thomas A. Neubert; A.C. Noll; S. Singh; Robert Steen; Michael Zianni; Anoja Perera

Collaboration


Dive into the Kip Bodi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.C. Noll

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anoja Perera

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Deborah S. Grove

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge