Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kira M. Holmström is active.

Publication


Featured researches published by Kira M. Holmström.


Nature Cell Biology | 2010

PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1

Sven Geisler; Kira M. Holmström; Diana Skujat; Fabienne C. Fiesel; Oliver Rothfuss; Philipp J. Kahle; Wolfdieter Springer

Parkinsons disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinsons disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage, ubiquitylation and autophagy in non-neuronal and neuronal cells. PINK1 kinase activity and its mitochondrial localization sequence are prerequisites to induce translocation of the E3 ligase Parkin to depolarized mitochondria. Subsequently, Parkin mediates the formation of two distinct poly-ubiquitin chains, linked through Lys 63 and Lys 27. In addition, the autophagic adaptor p62/SQSTM1 is recruited to mitochondrial clusters and is essential for the clearance of mitochondria. Strikingly, we identified VDAC1 (voltage-dependent anion channel 1) as a target for Parkin-mediated Lys 27 poly-ubiquitylation and mitophagy. Moreover, pathogenic Parkin mutations interfere with distinct steps of mitochondrial translocation, ubiquitylation and/or final clearance through mitophagy. Thus, our data provide functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinsons disease.


Nature Reviews Molecular Cell Biology | 2014

Cellular mechanisms and physiological consequences of redox-dependent signalling

Kira M. Holmström; Toren Finkel

Reactive oxygen species (ROS), which were originally characterized in terms of their harmful effects on cells and invading microorganisms, are increasingly implicated in various cell fate decisions and signal transduction pathways. The mechanism involved in ROS-dependent signalling involves the reversible oxidation and reduction of specific amino acids, with crucial reactive Cys residues being the most frequent target. In this Review, we discuss the sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated. We further discuss the recent observations that reduction–oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities — from immune function to stem cell self-renewal, and from tumorigenesis to ageing.


The Journal of Neuroscience | 2007

Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin

Nicole Exner; Bettina Treske; Dominik Paquet; Kira M. Holmström; Carola Schiesling; Suzana Gispert; Iria Carballo-Carbajal; Daniela Berg; Hans-Hermann Hoepken; Thomas Gasser; Rejko Krüger; Konstanze F. Winklhofer; Frank Vogel; Andreas S. Reichert; Georg Auburger; Philipp J. Kahle; Bettina Schmid; Christian Haass

Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinsons disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recent evidence points to a number of genes involved in familial variants of PD. Among them, a loss-of-function of phosphatase and tensin homolog-induced kinase 1 (PINK1; PARK6) is associated with rare cases of autosomal recessive parkinsonism. In HeLa cells, RNA interference-mediated downregulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Morphological changes of mitochondria can be rescued by expression of wild-type PINK1 but not by PD-associated PINK1 mutants. Moreover, primary cells derived from patients with two different PINK1 mutants showed a similar defect in mitochondrial morphology. Human parkin but not PD-associated mutants could rescue mitochondrial pathology in human cells like wild-type PINK1. Our results may therefore suggest that PINK1 deficiency in humans results in mitochondrial abnormalities associated with cellular stress, a pathological phenotype, which can be ameliorated by enhanced expression of parkin.


Autophagy | 2010

The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.

Sven Geisler; Kira M. Holmström; Angela Treis; Diana Skujat; Stephanie S. Weber; Fabienne C. Fiesel; Philipp J. Kahle; Wolfdieter Springer

Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin recruitment to impaired mitochondria. PD-associated Parkin mutations interfere with the process of mitophagy at distinct steps. Here we show that whole mitochondria are turned over via macroautophagy. Moreover, disease-associated PINK1 mutations also compromise the selective degradation of depolarized mitochondria. This may be due to the decreased physical binding activity of PD-linked PINK1 mutations to Parkin. Thus, PINK1 mutations abrogate autophagy of impaired mitochondria upstream of Parkin. In addition to compromised PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to failure in Parkin mitochondrial translocation, resulting in the accumulation of damaged mitochondria, which may contribute to disease pathogenesis.


Biology Open | 2013

Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

Kira M. Holmström; Liam Baird; Ying Zhang; Iain Hargreaves; Annapurna Chalasani; John M. Land; Lee Stanyer; Masayuki Yamamoto; Albena T. Dinkova-Kostova; Andrey Y. Abramov

Summary Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.


American Journal of Human Genetics | 2012

Mutations in ANO3 Cause Dominant Craniocervical Dystonia: Ion Channel Implicated in Pathogenesis

Gavin Charlesworth; Vincent Plagnol; Kira M. Holmström; Jose Bras; Una-Marie Sheerin; Elisavet Preza; Ignacio Rubio-Agusti; Mina Ryten; Susanne A. Schneider; Maria Stamelou; Daniah Trabzuni; Andrey Y. Abramov; Kailash P. Bhatia; Nicholas W. Wood

In this study, we combined linkage analysis with whole-exome sequencing of two individuals to identify candidate causal variants in a moderately-sized UK kindred exhibiting autosomal-dominant inheritance of craniocervical dystonia. Subsequent screening of these candidate causal variants in a large number of familial and sporadic cases of cervical dystonia led to the identification of a total of six putatively pathogenic mutations in ANO3, a gene encoding a predicted Ca(2+)-gated chloride channel that we show to be highly expressed in the striatum. Functional studies using Ca(2+) imaging in case and control fibroblasts demonstrated clear abnormalities in endoplasmic-reticulum-dependent Ca(2+) signaling. We conclude that mutations in ANO3 are a cause of autosomal-dominant craniocervical dystonia. The locus DYT23 has been reserved as a synonym for this gene. The implication of an ion channel in the pathogenesis of dystonia provides insights into an alternative mechanism that opens fresh avenues for further research.


Molecular Cell | 2015

Measuring In Vivo Mitophagy

Nuo Sun; Jeanho Yun; Jie Liu; Daniela Malide; Chengyu Liu; Ilsa I. Rovira; Kira M. Holmström; Maria M. Fergusson; Young Hyun Yoo; Christian A. Combs; Toren Finkel

Alterations in mitophagy have been increasingly linked to aging and age-related diseases. There are, however, no convenient methods to analyze mitophagy in vivo. Here, we describe a transgenic mouse model in which we expressed a mitochondrial-targeted form of the fluorescent reporter Keima (mt-Keima). Keima is a coral-derived protein that exhibits both pH-dependent excitation and resistance to lysosomal proteases. Comparison of a wide range of primary cells and tissues generated from the mt-Keima mouse revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima mice to analyze how mitophagy is altered by conditions including diet, oxygen availability, Huntingtin transgene expression, the absence of macroautophagy (ATG5 or ATG7 expression), an increase in mitochondrial mutational load, the presence of metastatic tumors, and normal aging. The ability to assess mitophagy under a host of varying environmental and genetic perturbations suggests that the mt-Keima mouse should be a valuable resource.


Biochimica et Biophysica Acta | 2015

Nrf2 regulates ROS production by mitochondria and NADPH oxidase.

Stjepana Kovac; Plamena R. Angelova; Kira M. Holmström; Ying Zhang; Albena T. Dinkova-Kostova; Andrey Y. Abramov

Background Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. Methods Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). Results We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. Conclusions These observations suggest that the Keap1–Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. General significance Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the cell.


Nature Communications | 2013

Signalling properties of inorganic polyphosphate in the mammalian brain

Kira M. Holmström; Nephtali Marina; Artyom Y. Baev; Nicholas W. Wood; Alexander V. Gourine; Andrey Y. Abramov

Inorganic polyphosphate is known to be present in the mammalian brain at micromolar concentrations. Here we show that polyphosphate may act as a gliotransmitter, mediating communication between astrocytes. It is released by astrocytes in a calcium-dependent manner and signals to neighbouring astrocytes through P2Y1 purinergic receptors, activation of phospholipase C and release of calcium from the intracellular stores. In primary neuroglial cultures, application of polyP triggers release of endogenous polyphosphate from astrocytes while neurons take it up. In vivo, central actions of polyphosphate at the level of the brainstem include profound increases in key homeostatic physiological activities, such as breathing, central sympathetic outflow and the arterial blood pressure. Together, these results suggest a role for polyphosphate as a mediator of astroglial signal transmission in the mammalian brain.


Circulation Research | 2015

The Ins and Outs of Mitochondrial Calcium

Toren Finkel; Sara Menazza; Kira M. Holmström; Randi J. Parks; Julia Liu; Junhui Sun; Jie Liu; Xin Pan; Elizabeth Murphy

Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

Collaboration


Dive into the Kira M. Holmström's collaboration.

Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Toren Finkel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Murphy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Junhui Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Caitlin Vail

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Elorm J. Agra

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

György Csordás

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Jie Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jyotsna Mishra

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge