Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiran Kumar Velpula is active.

Publication


Featured researches published by Kiran Kumar Velpula.


PLOS ONE | 2010

Upregulation of PTEN in Glioma Cells by Cord Blood Mesenchymal Stem Cells Inhibits Migration via Downregulation of the PI3K/Akt Pathway

Venkata Ramesh Dasari; Kiranpreet Kaur; Kiran Kumar Velpula; Meena Gujrati; Daniel Fassett; Jeffrey D. Klopfenstein; Dzung H. Dinh; Jasti S. Rao

Background PTEN (phosphatase and tensin homologue deleted on chromosome ten) is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown. Methodology/Principal Findings In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310) alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC). Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain. Conclusions/Significance Our studies indicated that upregulation of PTEN by hUCBSC in glioma cells and in the nude mice tumors downregulated Akt and PI3K signaling pathway molecules. This resulted in the inhibition of migration as well as wound healing property of the glioma cells. Taken together, our results suggest hUCBSC as a therapeutic agent in treating malignant gliomas.


Cancer Research | 2013

Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect

Kiran Kumar Velpula; Arnima Bhasin; Swapna Asuthkar; Andrew J. Tsung

Glioblastoma multiforme is the most aggressive primary brain tumor in adults. Overexpression of the EGF receptor (EGFR) is recognized as a widespread oncogenic signature in glioblastoma multiforme, but the complexity of its contributions is not fully understood, nor the most effective ways to leverage anti-EGFR therapy in this setting. Hypoxia is known to drive the aggressive character of glioblastoma multiforme by promoting aerobic glycolysis rather than pyruvate oxidation carried out in mitochondria (OXPHOS), a phenomenon termed the Warburg effect, which is a general feature of oncogenesis. In this study, we report that hypoxia drives expression of the pyruvate dehydrogenase kinase (PDK1) and EGFR along with the hypoxia-inducing factor (HIF)-1α in human glioblastoma multiforme cells. PDK1 is a HIF-1-regulated gene and our findings indicated that hypoxia-induced PDK1 expression may promote EGFR activation, initiating a feed-forward loop that can sustain malignant progression. RNAi-mediated attenuation of PDK1 and EGFR lowered PDK1-EGFR activation and decreased HIF-1α expression, shifting the Warburg phenotype to OXPHOS and inhibiting glioblastoma multiforme growth and proliferation. In clinical specimens of glioblastoma multiforme, we found that immunohistochemical expression of PDK1, EGFR, and HIF-1α were elevated in glioblastoma multiforme specimens when compared with normal brain tissues. Collectively, our studies establish PDK1 as a key driver and candidate therapeutic target in glioblastoma multiforme.


PLOS ONE | 2010

Cord Blood Stem Cell-Mediated Induction of Apoptosis in Glioma Downregulates X-Linked Inhibitor of Apoptosis Protein (XIAP)

Venkata Ramesh Dasari; Kiran Kumar Velpula; Kiranpreet Kaur; Daniel Fassett; Jeffrey D. Klopfenstein; Dzung H. Dinh; Meena Gujrati; Jasti S. Rao

Background XIAP (X-linked inhibitor of apoptosis protein) is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC) in glioma cells would cause them to undergo apoptotic death. Methodology/Principal Findings We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310). In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP). Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO. Conclusions/Significance Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant gliomas.


Journal of Biological Chemistry | 2012

Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Regulation of WNT/β-Catenin Signaling Is Enhanced in Irradiated Medulloblastoma Cells

Swapna Asuthkar; Christopher S. Gondi; Arun Kumar Nalla; Kiran Kumar Velpula; Bharathi Gorantla; Jasti S. Rao

Background: uPAR is a multifunctional protein, overexpressed in all human cancers. Results: uPAR overexpression with radiation enhances β-catenin stabilization, β-catenin gene transcription, and WNT-7a-β-catenin-TCF/LEF-mediated transactivation. Conclusion: Association of uPAR with β-catenin and various transcription factors involved in embryonic development suggests that uPAR is a potent activator of cancer stemness. Significance: Targeting uPAR in cancer patients undergoing radiotherapy will have favorable therapeutic implications. Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications.


Journal of Biological Chemistry | 2015

The TRPM8 Protein Is a Testosterone Receptor II. FUNCTIONAL EVIDENCE FOR AN IONOTROPIC EFFECT OF TESTOSTERONE ON TRPM8

Swapna Asuthkar; Lusine Demirkhanyan; Xiaohui Sun; Pia A. Elustondo; Vivek Krishnan; Padmamalini Baskaran; Kiran Kumar Velpula; Baskaran Thyagarajan; Evgeny Pavlov; Eleonora Zakharian

Background: TRPM8 channels are highly expressed in prostate tissues, where the role of this cold receptor is not well understood. Results: Testosterone activates TRPM8 in various cellular systems and in the planar lipid bilayers. Conclusion: TRPM8 is an ionotropic testosterone receptor. Significance: TRPM8 channels may be implicated in various physiological processes regulated by androgens. Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits.


Oncogene | 2014

Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells

Swapna Asuthkar; Kiran Kumar Velpula; Arun Kumar Nalla; Venkateswara Rao Gogineni; Christopher S. Gondi; Jasti S. Rao

Matrix metalloproteinase-9 (MMP-9) represents one of the most prominent proteins associated with tumorigenesis and is a modulator of the tumor microenvironment during angiogenesis. Recently, syndecan-1 (SDC1), a transmembrane heparan sulfate-bearing proteoglycan, was also speculated to have a critical role in contributing to angiogenesis when associated with MMP-9. However, the mechanism behind their synergistic regulation is not fully understood. In the current study, we report for the first time that ionizing radiation (IR)-induced MMP-9 enhances SDC1 shedding, corroborating to tube-inducing ability of medulloblastoma (MB) cells. Furthermore, we observed that the tumor angiogenesis is associated with higher MMP-9–SDC1 interactions on both the cell surface and extracellular medium. Our results also revealed the existence of a novel regulatory mechanism where MMP-9 drives the suppression of miR-494, resulting in enhanced SDC1 shedding and angiogenesis. From the in situ hybridization analysis, we found that MMP-9-specific shRNA (shMMP-9) treatment of mouse intracranial tumors resulted in elevated expression of miR-494. This negative correlation between MMP-9 and miR-494 levels was observed to be dependent on the methylation status of a miR-494 promoter-associated CpG island region (−186 to −20), which was confirmed by bisulfite-sequencing and methylation-specific PCR (MSP) analysis. Further, validation of MMP-9 and SDC1 3′-untranslated region (3′-UTR) targets with luciferase reporter assay provided a more favorable result for miR-494-mediated regulation of SDC1 but not of MMP-9, suggesting that the 3′-UTR of SDC1 mRNA is a direct target of miR-494. Overall, our results indicate that angiogenesis induced by radiotherapy is associated with an MMP-9–miR-494–SDC1 regulatory loop and that MMP-9–SDC1 activity creates a negative feedback loop by regulating the expression of miR-494.


Cellular Signalling | 2012

Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway

Kiran Kumar Velpula; Azeem A. Rehman; Bharath Chelluboina; Venkata Ramesh Dasari; Christopher S. Gondi; Jasti S. Rao; Krishna Kumar Veeravalli

The recent characterization of glioma stem cells (GSCs) prompts a necessary examination of the signaling pathways that facilitate invasiveness. Molecular crosstalk between expression mechanisms has been identified in a range of cancers, including glioblastoma multiforme. However, hardly any literature exists that addresses whether cancer stem cells utilize these same interconnected pathways. Protein factors commonly implicated in malignant tumors include extracellular signal-regulated kinase (ERK), N-cadherin, and integrin α6. Although studies have reported the molecular crosstalk involved among these proteins, the present study illustrates the importance of the ERK transduction pathway in N-cadherin and integrin α6 regulated invasion in GSCs. Conversely, the data also suggests that GSCs rely on N-cadherin and integrin α6 interaction to regulate ERK signaling. Moreover, confocal visualization revealed the co-localization of N-cadherin and integrin α6 in GSCs and clinical surgical biopsies extracted from glioma patients. Interestingly, ERK knockdown reduced this co-localization. Upon co-culturing GSCs with human umbilical cord blood stem cells (hUCBSCs), we observed a subsequent decrease in pERK, N-cadherin and integrin α6 expression. In addition, co-culturing hUCBSCs with GSCs decreased co-localization of N-cadherin and integrin α6 in GSCs. Our results demonstrate the dynamic interplay among ERK, N-cadherin and integrin α6 in GSC invasion and also reveal the therapeutic potential of hUCBSCs in treating the molecular crosstalk observed in GSC-regulated invasion.


Journal of Biological Chemistry | 2015

The TRPM8 Protein Is a Testosterone Receptor I. BIOCHEMICAL EVIDENCE FOR DIRECT TRPM8-TESTOSTERONE INTERACTIONS

Swapna Asuthkar; Pia A. Elustondo; Lusine Demirkhanyan; Xiaohui Sun; Padmamalini Baskaran; Kiran Kumar Velpula; Baskaran Thyagarajan; Evgeny Pavlov; Eleonora Zakharian

Background: TRPM8 channels are highly expressed in prostate tissues, where the role of this cold receptor is not well understood. Results: Testosterone directly interacts with the TRPM8 protein. Conclusion: TRPM8 is a testosterone receptor. Significance: TRPM8 channels may be implicated in various physiological processes regulated by androgens. The transient receptor potential ion channel of the melastatin subfamily, TRPM8, is a major cold receptor in the peripheral nervous system. Along with the sensory neurons, the TRPM8 protein is highly expressed in the prostate epithelial cells, and this expression is regulated by androgens. Here we investigated the expression and intracellular localization of the TRPM8 channel in relationship to androgens. We performed experiments using human prostate tissues obtained from healthy individuals and patients with prostate cancer at various stages of the disease as well as in cultured cells. Using an immunohistochemistry approach, we detected an intensive colocalization pattern of the TRPM8 protein with endogenous androgens in all tissues tested, suggesting possible interactions. Co-immunoprecipitation experiments performed using cultured prostate epithelial cells, prostate cancer cells, and HEK-293 cells stably expressing TRPM8 further confirmed direct binding of the steroid hormone, testosterone, to the TRPM8 protein. Applications of picomolar concentrations of testosterone to the primary human prostate cells, endogenously expressing TRPM8, elicited Ca2+ responses and channel currents, and those were inhibited in the presence of TRPM8 antagonist, N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride. These results indicate that the TRPM8 channel is physically associated with testosterone and suggest that, in addition to a genomic role, testosterone plays a role in direct regulation of the TRPM8 channel function.


Cell Death and Disease | 2012

uPAR and cathepsin B shRNA impedes TGF-β1-driven proliferation and invasion of meningioma cells in a XIAP-dependent pathway

Venkateswara Rao Gogineni; Reshu Gupta; Arun Kumar Nalla; Kiran Kumar Velpula; Jasti S. Rao

Overexpression of transforming growth factor β1 (TGF-β1) has been linked to immune suppression, tumor angiogenesis, tumor cell migration, tumor cell survival, and tumor cell invasion in many cancers. In the present study, we found abundant expression of TGF-β1 in the microenvironment of four different pathological types of meningioma tumors. TGF-β1 induced invasion in malignant meningioma cells with an associated upregulation of urokinase-type plasminogen activator (uPA), uPAR, cathepsin B, and MMP-9, and this increase in proliferation was coupled with the expression of anti-apoptotic and pro-survival signaling molecules. In addition to the intense immunoreactivity of meningioma tumors to X-linked inhibitor to apoptosis (XIAP), its knockdown abolished the TGF-β1-induced proliferation of these cells. The stimulation of XIAP expression and the activation of pSMAD-2 is mediated by phosphatidylinositol 3-kinase (PI3K)- and MEK-dependent pathways, and the addition of anti-TGF-β1 antibodies prevented their expression with a consequent decrease in invasion. Bicistronic shRNA constructs targeting uPAR and cathepsin B (pUC) quenched TGF-β1-driven invasion and survival of meningioma cells by downregulation of XIAP and pSMAD-2 expression. Animal models with intracranial tumors showed elevated levels of TGF-β1, XIAP and pSMAD-2, and pUC treatment prevented this increased expression. Thus, targeted silencing of TGF-β1-induced signaling by pUC in meningioma would provide new treatment approaches for management of meningioma.


PLOS ONE | 2011

Regulation of glioblastoma progression by cord blood stem cells is mediated by downregulation of cyclin D1.

Kiran Kumar Velpula; Venkata Ramesh Dasari; Andrew J. Tsung; Christopher S. Gondi; Jeffrey D. Klopfenstein; Sanjeeva Mohanam; Jasti S. Rao

Background The normal progression of the cell cycle requires sequential expression of cyclins. Rapid induction of cyclin D1 and its associated binding with cyclin-dependent kinases, in the presence or absence of mitogenic signals, often is considered a rate-limiting step during cell cycle progression through the G1 phase. Methodology/Principal Findings In the present study, human umbilical cord blood stem cells (hUCBSC) in co-cultures with glioblastoma cells (U251 and 5310) not only induced G0-G1 phase arrest, but also reduced the number of cells at S and G2-M phases of cell cycle. Cell cycle regulatory proteins showed decreased expression levels upon treatment with hUCBSC as revealed by Western and FACS analyses. Inhibition of cyclin D1 activity by hUCBSC treatment is sufficient to abolish the expression levels of Cdk 4, Cdk 6, cyclin B1, β-Catenin levels. Our immuno precipitation experiments present evidence that, treatment of glioma cells with hUCBSC leads to the arrest of cell-cycle progression through inactivation of both cyclin D1/Cdk 4 and cyclin D1/Cdk 6 complexes. It is observed that hUCBSC, when co-cultured with glioma cells, caused an increased G0-G1 phase despite the reduction of G0-G1 regulatory proteins cyclin D1 and Cdk 4. We found that this reduction of G0-G1 regulatory proteins, cyclin D1 and Cdk 4 may be in part compensated by the expression of cyclin E1, when co-cultured with hUCBSC. Co-localization experiments under in vivo conditions in nude mice brain xenografts with cyclin D1 and CD81 antibodies demonstrated, decreased expression of cyclin D1 in the presence of hUCBSC. Conclusions/Significance This paper elucidates a model to regulate glioma cell cycle progression in which hUCBSC acts to control cyclin D1 induction and in concert its partner kinases, Cdk 4 and Cdk 6 by mediating cell cycle arrest at G0-G1 phase.

Collaboration


Dive into the Kiran Kumar Velpula's collaboration.

Top Co-Authors

Avatar

Swapna Asuthkar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Tsung

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jasti S. Rao

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Maheedhara R. Guda

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Venkata Ramesh Dasari

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Eleonora Zakharian

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Collin M. Labak

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Venkateswara Rao Gogineni

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Dzung H. Dinh

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Arun Kumar Nalla

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge