Kiran Raosaheb Patil
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiran Raosaheb Patil.
BMC Bioinformatics | 2005
Kiran Raosaheb Patil; Isabel Rocha; Jochen Förster; Jens Nielsen
BackgroundThrough genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms.ResultsIn this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed.ConclusionWe show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and may be necessary for solving challenging metabolic engineering problems.
BMC Systems Biology | 2010
Isabel Rocha; Paulo Maia; Pedro Evangelista; Paulo Vilaça; Simão Soares; José P. Pinto; Jens Nielsen; Kiran Raosaheb Patil; E. C. Ferreira; Miguel Rocha
BackgroundOver the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.ResultsOptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph.ConclusionsThe OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.
Plant Physiology | 2006
Charles Baxter; Henning Redestig; Nicolas Schauer; Dirk Repsilber; Kiran Raosaheb Patil; Jens Nielsen; Joachim Selbig; Junli Liu; Alisdair R. Fernie; Lee J. Sweetlove
To cope with oxidative stress, the metabolic network of plant cells must be reconfigured either to bypass damaged enzymes or to support adaptive responses. To characterize the dynamics of metabolic change during oxidative stress, heterotrophic Arabidopsis (Arabidopsis thaliana) cells were treated with menadione and changes in metabolite abundance and 13C-labeling kinetics were quantified in a time series of samples taken over a 6 h period. Oxidative stress had a profound effect on the central metabolic pathways with extensive metabolic inhibition radiating from the tricarboxylic acid cycle and including large sectors of amino acid metabolism. Sequential accumulation of metabolites in specific pathways indicated a subsequent backing up of glycolysis and a diversion of carbon into the oxidative pentose phosphate pathway. Microarray analysis revealed a coordinated transcriptomic response that represents an emergency coping strategy allowing the cell to survive the metabolic hiatus. Rather than attempt to replace inhibited enzymes, transcripts encoding these enzymes are in fact down-regulated while an antioxidant defense response is mounted. In addition, a major switch from anabolic to catabolic metabolism is signaled. Metabolism is also reconfigured to bypass damaged steps (e.g. induction of an external NADH dehydrogenase of the mitochondrial respiratory chain). The overall metabolic response of Arabidopsis cells to oxidative stress is remarkably similar to the superoxide and hydrogen peroxide stimulons of bacteria and yeast (Saccharomyces cerevisiae), suggesting that the stress regulatory and signaling pathways of plants and microbes may share common elements.
Metabolic Engineering | 2009
Mohammad Ali Asadollahi; Jerome Maury; Kiran Raosaheb Patil; Michel Schalk; Anthony Clark; Jens Nielsen
A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework and minimization of metabolic adjustments (MOMA) as objective function. Deletion of NADPH-dependent glutamate dehydrogenase encoded by GDH1 was identified as the best target gene for the improvement of sesquiterpene biosynthesis in yeast. Deletion of this gene enhances the available NADPH in the cytosol for other NADPH requiring enzymes, including HMG-CoA reductase. However, since disruption of GDH1 impairs the ammonia utilization, simultaneous over-expression of the NADH-dependent glutamate dehydrogenase encoded by GDH2 was also considered in this study. Deletion of GDH1 led to an approximately 85% increase in the final cubebol titer. However, deletion of this gene also caused a significant decrease in the maximum specific growth rate. Over-expression of GDH2 did not show a further effect on the final cubebol titer but this alteration significantly improved the growth rate compared to the GDH1 deleted strain.
Microbial Cell Factories | 2010
Ana Rita Brochado; Claudia Matos; Birger Lindberg Møller; Jorgen Hansen; Uffe Hasbro Mortensen; Kiran Raosaheb Patil
BackgroundVanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in bakers yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis.ResultsExpression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in bakers yeast.ConclusionUse of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Aleksej Zelezniak; Sergej Andrejev; Olga Ponomarova; Daniel R. Mende; Peer Bork; Kiran Raosaheb Patil
Significance Although metabolic interactions have long been implicated in the assembly of microbial communities, their general prevalence has remained largely unknown. In this study, we systematically survey, by using a metabolic modeling approach, the extent of resource competition and metabolic cross-feeding in over 800 microbial communities from diverse habitats. We show that interspecies metabolic exchanges are widespread in natural communities, and that such exchanges can provide group advantage under nutrient-poor conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence. The presented methodology and mechanistic insights have broad implications for understanding compositional variation in natural communities as well as for facilitating the design of synthetic microbial communities. Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture.
PLOS ONE | 2013
José Manuel Otero; Donatella Cimini; Kiran Raosaheb Patil; Simon Guldberg Poulsen; Lisbeth Olsson; Jens Nielsen
Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals.
Nucleic Acids Research | 2010
Marija Cvijovic; Roberto Olivares-Hernández; Rasmus Agren; Niklas Dahr; Wanwipa Vongsangnak; Intawat Nookaew; Kiran Raosaheb Patil; Jens Nielsen
The rapid progress of molecular biology tools for directed genetic modifications, accurate quantitative experimental approaches, high-throughput measurements, together with development of genome sequencing has made the foundation for a new area of metabolic engineering that is driven by metabolic models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different conditions possible. For facilitating such systemic analysis, we have developed the BioMet Toolbox, a web-based resource for stoichiometric analysis and for integration of transcriptome and interactome data, thereby exploiting the capabilities of genome-scale metabolic models. The BioMet Toolbox provides an effective user-friendly way to perform linear programming simulations towards maximized or minimized growth rates, substrate uptake rates and metabolic production rates by detecting relevant fluxes, simulate single and double gene deletions or detect metabolites around which major transcriptional changes are concentrated. These tools can be used for high-throughput in silico screening and allows fully standardized simulations. Model files for various model organisms (fungi and bacteria) are included. Overall, the BioMet Toolbox serves as a valuable resource for exploring the capabilities of these metabolic networks. BioMet Toolbox is freely available at www.sysbio.se/BioMet/.
BMC Systems Biology | 2010
Arnau Montagud; Emilio Navarro; Pedro Fernández de Córdoba; J.F. Urchueguía; Kiran Raosaheb Patil
BackgroundSynechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network.ResultsWe report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, i Syn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of i Syn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, i Syn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes.Conclusionsi Syn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories.
BMC Bioinformatics | 2008
Miguel Rocha; Paulo Maia; Rui Mendes; José P. Pinto; E. C. Ferreira; Jens Nielsen; Kiran Raosaheb Patil; Isabel Rocha
BackgroundOne of the greatest challenges in Metabolic Engineering is to develop quantitative models and algorithms to identify a set of genetic manipulations that will result in a microbial strain with a desirable metabolic phenotype which typically means having a high yield/productivity. This challenge is not only due to the inherent complexity of the metabolic and regulatory networks, but also to the lack of appropriate modelling and optimization tools. To this end, Evolutionary Algorithms (EAs) have been proposed for in silico metabolic engineering, for example, to identify sets of gene deletions towards maximization of a desired physiological objective function. In this approach, each mutant strain is evaluated by resorting to the simulation of its phenotype using the Flux-Balance Analysis (FBA) approach, together with the premise that microorganisms have maximized their growth along natural evolution.ResultsThis work reports on improved EAs, as well as novel Simulated Annealing (SA) algorithms to address the task of in silico metabolic engineering. Both approaches use a variable size set-based representation, thereby allowing the automatic finding of the best number of gene deletions necessary for achieving a given productivity goal. The work presents extensive computational experiments, involving four case studies that consider the production of succinic and lactic acid as the targets, by using S. cerevisiae and E. coli as model organisms. The proposed algorithms are able to reach optimal/near-optimal solutions regarding the production of the desired compounds and presenting low variability among the several runs.ConclusionThe results show that the proposed SA and EA both perform well in the optimization task. A comparison between them is favourable to the SA in terms of consistency in obtaining optimal solutions and faster convergence. In both cases, the use of variable size representations allows the automatic discovery of the approximate number of gene deletions, without compromising the optimality of the solutions.