Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirill M. Popov is active.

Publication


Featured researches published by Kirill M. Popov.


Biochemical Journal | 2001

Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites.

Elena Kolobova; Alina Tuganova; Igor Boulatnikov; Kirill M. Popov

The enzymic activity of the mammalian pyruvate dehydrogenase complex is regulated by the phosphorylation of three serine residues (sites 1, 2 and 3) located on the E1 component of the complex. Here we report that the four isoenzymes of protein kinase responsible for the phosphorylation and inactivation of pyruvate dehydrogenase (PDK1, PDK2, PDK3 and PDK4) differ in their abilities to phosphorylate the enzyme. PDK1 can phosphorylate all three sites, whereas PDK2, PDK3 and PDK4 each phosphorylate only site 1 and site 2. Although PDK2 phosphorylates site 1 and 2, it incorporates less phosphate in site 2 than PDK3 or PDK4. As a result, the amount of phosphate incorporated by each isoenzyme decreases in the order PDK1>PDK3>or=PDK4>PDK2. Significantly, binding of the coenzyme thiamin pyrophosphate to pyruvate dehydrogenase alters the rates and stoichiometries of phosphorylation of the individual sites. First, the rate of phosphorylation of site 1 by all isoenzymes of kinase is decreased. Secondly, thiamin pyrophosphate markedly decreases the amount of phosphate that PDK1 incorporates in sites 2 and 3 and that PDK2 incorporates in site 2. In contrast, the coenzyme does not significantly affect the total amount of phosphate incorporated in site 2 by PDK3 and PDK4, but instead decreases the rate of phosphorylation of this site. Furthermore, pyruvate dehydrogenase complex phosphorylated by the individual isoenzymes of kinase is reactivated at different rates by pyruvate dehydrogenase phosphatase. Both isoenzymes of phosphatase (PDP1 and PDP2) readily reactivate the complex phosphorylated by PDK2. When pyruvate dehydrogenase is phosphorylated by other isoenzymes, the rates of reactivation decrease in the order PDK4>or=PDK3>PDK1. Taken together, results reported here strongly suggest that the major determinants of the activity state of pyruvate dehydrogenase in mammalian tissues include the phosphorylation site specificity of isoenzymes of kinase in addition to the absolute amounts of kinase and phosphatase protein expressed in mitochondria.


Cardiovascular Research | 2002

Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts.

Carmen P. Lydell; Andy Chan; Richard B. Wambolt; Nandakumar Sambandam; Hannah Parsons; Gregory P. Bondy; Brian Rodrigues; Kirill M. Popov; Robert A. Harris; Roger W. Brownsey; Michael F. Allard

OBJECTIVE Coupling of glucose oxidation to glycolysis is lower in hypertrophied than in non-hypertrophied hearts, contributing to the compromised mechanical performance of hypertrophied hearts. Here, we describe studies to test the hypothesis that low coupling of glucose oxidation to glycolysis in hypertrophied hearts is due to reduced activity and/or expression of the pyruvate dehydrogenase complex (PDC). METHODS We examined the effects of dichloroacetate (DCA), an inhibitor of PDC kinase, and of alterations in exogenous palmitate supply on coupling of glucose oxidation to glycolysis in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. It was anticipated that the addition of DCA or the absence of palmitate would promote PDC activation and consequently normalize coupling between glycolysis and glucose oxidation in hypertrophied hearts if our hypothesis was correct. RESULTS Addition of DCA or removal of palmitate improved coupling of glucose oxidation to glycolysis in control and hypertrophied hearts. However, coupling remained substantially lower in hypertrophied hearts. PDC activity in extracts of hypertrophied hearts was similar to or higher than in extracts of control hearts under all perfusion conditions. No differences were observed between hypertrophied and control hearts with respect to expression of PDC, PDC kinase, or PDC phosphatase. CONCLUSIONS Low coupling of glucose oxidation to glycolysis in hypertrophied hearts is not due to a reduction in PDC activity or subunit expression indicating that other mechanism(s) are responsible.


Biochemical Journal | 2002

Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex

Alina Tuganova; Igor Boulatnikov; Kirill M. Popov

Protein-protein interactions play an important role in the regulation of enzymic activity of pyruvate dehydrogenase kinase (PDK). It is generally believed that the binding of PDK to the inner lipoyl-bearing domain L2 of the transacetylase component E2 of pyruvate dehydrogenase complex largely determines the level of kinase activity. In the present study, we characterized the interaction between the individual isoenzymes of PDK (PDK1-PDK4) and monomeric L2 domain of human E2, as well as the effect of this interaction on kinase activity. It was found that PDK isoenzymes are markedly different with respect to their affinities for L2. PDK3 demonstrated a very tight binding, which persisted during isolation of PDK3-L2 complexes using size-exclusion chromatography. Binding of PDK1 and PDK2 was readily reversible with the apparent dissociation constant of approx. 10 microM for both isoenzymes. PDK4 had a greatly reduced capacity for L2 binding (relative order PDK3>PDK1=PDK2>PDK4). Monomeric L2 domain alone had very little effect on the activities of either PDK1 or PDK2. In contrast, L2 caused a 3-fold increase in PDK3 activity and approx. 37% increase in PDK4 activity. These results strongly suggest that the interactions between the individual isoenzymes of PDK and L2 domain are isoenzyme-specific and might be among the major factors that determine the level of kinase activity of particular isoenzyme towards the pyruvate dehydrogenase complex.


Journal of Biological Chemistry | 2001

An Essential Role of Glu-243 and His-239 in the Phosphotransfer Reaction Catalyzed by Pyruvate Dehydrogenase Kinase

Alina Tuganova; Marilyn D. Yoder; Kirill M. Popov

This study was undertaken to examine the mechanistic significance of two highly conserved residues positioned in the active site of pyruvate dehydrogenase kinase, Glu-243 and His-239. We used site-directed mutagenesis to convert Glu-243 to Ala, Asp, or Gln and His-239 to Ala. The resulting mutant kinases demonstrated a greatly reduced capacity for phosphorylation of pyruvate dehydrogenase. The Glu-243 to Asp mutant had ∼2% residual activity, whereas the Glu-243 to Ala or Gln mutants exhibited less than 0.5 and 0.1% residual activity, respectively. Activity of the His-239 to Ala mutant was decreased by ∼90%. Active-site titration with [α-32P]ATP revealed that neither Glu-243 nor His-239 mutations affected nucleotide binding. All mutant kinases showed similar or even somewhat greater affinity than the wild-type kinase toward the protein substrate, pyruvate dehydrogenase complex. Furthermore, neither of the mutations affected the inter-subunit interactions. Finally, pyruvate dehydrogenase kinase was found to possess a weak ATP hydrolytic activity, which required Glu-243 and His-239 similar to the kinase activity. Based on these observations, we propose a mechanism according to which the invariant glutamate residue (Glu-243) acts as a general base catalyst, which activates the hydroxyl group on a serine residue of the protein substrate for direct attack on the γ phosphate. The glutamate residue in turn might be further polarized through interaction with the neighboring histidine residue (His-239).


Journal of Biological Chemistry | 2008

Structural and Functional Insights into the Molecular Mechanisms Responsible for the Regulation of Pyruvate Dehydrogenase Kinase 2

Todd J. Green; Alexei Grigorian; Alla Klyuyeva; Alina Tuganova; Ming Luo; Kirill M. Popov

PDHK2 is a mitochondrial protein kinase that phosphorylates pyruvate dehydrogenase complex, thereby down-regulating the oxidation of pyruvate. Here, we present the crystal structure of PDHK2 bound to the inner lipoyl-bearing domain of dihydrolipoamide transacetylase (L2) determined with or without bound adenylyl imidodiphosphate. Both structures reveal a PDHK2 dimer complexed with two L2 domains. Comparison with apo-PDHK2 shows that L2 binding causes rearrangements in PDHK2 structure that affect the L2- and E1-binding sites. Significant differences are found between PDHK2 and PDHK3 with respect to the structure of their lipoyllysine-binding cavities, providing the first structural support to a number of studies showing that these isozymes are markedly different with respect to their affinity for the L2 domain. Both structures display a novel type II potassium-binding site located on the PDHK2 interface with the L2 domain. Binding of potassium ion at this site rigidifies the interface and appears to be critical in determining the strength of L2 binding. Evidence is also presented that potassium ions are indispensable for the cross-talk between the nucleotide- and L2-binding sites of PDHK2. The latter is believed to be essential for the movement of PDHK2 along the surface of the transacetylase scaffold.


BMC Cardiovascular Disorders | 2006

Gender and post-ischemic recovery of hypertrophied rat hearts.

Ramesh Saeedi; Richard B. Wambolt; Hannah Parsons; Christine Antler; Hon Leong; A. Keller; George Dunaway; Kirill M. Popov; Michael F. Allard

BackgroundGender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose.MethodsFunction and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group) were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests.ResultsFemale gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in female than male non-hypertrophied hearts. Glucose oxidation was lower in female than male hearts and was unaffected by hypertrophy or ischemia. Consequently, non-oxidative catabolism of glucose after ischemia was lowest in male non-hypertrophied hearts and comparably elevated in hypertrophied hearts of both sexes. These differences in non-oxidative glucose catabolism were inversely related to post-ischemic functional recovery.ConclusionGender does not significantly influence post-ischemic function of hypertrophied hearts, even though female sex is detrimental to post-ischemic function in non-hypertrophied hearts. Differences in glucose catabolism may contribute to hypertrophy-induced and gender-related differences in post-ischemic function.


Biochemical Journal | 2005

Role of protein-protein interactions in the regulation of pyruvate dehydrogenase kinase activity.

Alina Tuganova; Kirill M. Popov

The transacetylase component (E2) of PDC (pyruvate dehydrogenase complex) plays a critical role in the regulation of PDHK (pyruvate dehydrogenase kinase) activity. The present study was undertaken to investigate further the molecular mechanism by which E2 modulates the activity of PDHK. In agreement with the earlier results, it was found that the inner L2 (lipoyl-bearing domain 2) of E2 expressed with or without the C-terminal hinge region had little, if any, effect on the kinase activity, indicating a lack of direct allosteric effect of L2 on PDHK. In marked contrast, significant activation of PDHK was observed with the construct consisting of L2 and the E1BD (E1-binding domain) of E2 (L2-E1BD didomain) suggesting that co-localization and/or mutual orientation of PDHK and E1, facilitated by E2 binding, largely account for the activation of PDHK by the transacetylase component. Isothermal titration calorimetry and glutathione S-transferase pull-down assays established that binding of adenyl nucleotides to the PDHK molecule facilitated the release of L2 domain. In contrast, binding of the L2 domain caused a significant decrease in the affinity of PDHK for ATP. The cross-talk in binding of adenyl nucleotides and the L2 domain to PDHK may indicate the existence of a highly integrated mechanism whereby the exchange of lipoyl-bearing domains presented to PDHK by E2 is coupled with ADP/ATP exchange.


Biochimica et Biophysica Acta | 2003

Formation of functional heterodimers by isozymes 1 and 2 of pyruvate dehydrogenase kinase

Igor Boulatnikov; Kirill M. Popov

Pyruvate dehydrogenase kinase (PDK) is a mitochondrial enzyme responsible for regulation of the pyruvate dehydrogenase complex and, consequently, aerobic oxidation of carbohydrate fuels in general. In mammals, there are four genetically and biochemically distinct forms of PDK that are expressed in a tissue-specific manner (PDK1, PDK2, PDK3, and PDK4). These protein kinases have been shown to function as dimers, but the possibility of heterodimerization between various isozyme subunits has not yet been investigated. Here, we demonstrate that two members of the PDK family, PDK1 and PDK2, form heterodimeric species when coexpressed in the same Escherichia coli cell. The heterodimeric kinase produced in vivo was purified to near homogeneity by affinity chromatography. The purified kinase was stable and was not subjected to reassortment of the subunits. The heterodimeric kinase was catalytically active and was clearly distinct from homodimeric PDK1 or PDK2 with respect to kinetic parameters, site specificity and regulation. These data strongly suggest that heterodimerization between PDK1 and PDK2 adds another level of diversity to this protein family in addition to that which arises from gene multiplicity.


FEBS Letters | 2007

Amino acid residues responsible for the recognition of dichloroacetate by pyruvate dehydrogenase kinase 2

Alla Klyuyeva; Alina Tuganova; Kirill M. Popov

Dichloroacetate (DCA) is a promising anticancer and antidiabetic compound targeting the mitochondrial pyruvate dehydrogenase kinase (PDHK). This study was undertaken in order to map the DCA‐binding site of PDHK2. Here, we present evidence that R114, S83, I157 and, to some extent, H115 are essential for DCA binding. We also show that Y80 and D117 are required for the communication between the DCA‐binding site and active site of PDHK2. These observations provide important insights into the mechanism of DCA action that may be useful for the design of new, more potent therapeutic compounds.


Diabetes | 2003

Starvation and Diabetes Reduce the Amount of Pyruvate Dehydrogenase Phosphatase in Rat Heart and Kidney

Boli Huang; Pengfei Wu; Kirill M. Popov; Robert A. Harris

Collaboration


Dive into the Kirill M. Popov's collaboration.

Top Co-Authors

Avatar

Alina Tuganova

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Alla Klyuyeva

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Igor Boulatnikov

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Parsons

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael F. Allard

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Richard B. Wambolt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Boli Huang

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Elena Kolobova

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

George Dunaway

Southern Illinois University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge