Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirk J. McManus is active.

Publication


Featured researches published by Kirk J. McManus.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers.

Thomas D. Barber; Kirk J. McManus; Karen W. Y. Yuen; Marcelo Reis; Giovanni Parmigiani; Dong Shen; Irene J. Barrett; Yasaman Nouhi; Forrest Spencer; Sanford D. Markowitz; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; Christoph Lengauer; Philip Hieter

Although the majority of colorectal cancers exhibit chromosome instability (CIN), only a few genes that might cause this phenotype have been identified and no general mechanism underlying their function has emerged. To systematically identify somatic mutations in potential CIN genes in colorectal cancers, we determined the sequence of 102 human homologues of 96 yeast CIN genes known to function in various aspects of chromosome transmission fidelity. We identified 11 somatic mutations distributed among five genes in a panel that included 132 colorectal cancers. Remarkably, all but one of these 11 mutations were in the homologs of yeast genes that regulate sister chromatid cohesion. We then demonstrated that down-regulation of such homologs resulted in chromosomal instability and chromatid cohesion defects in human cells. Finally, we showed that down-regulation or genetic disruption of the two major candidate CIN genes identified in previous studies (MRE11A and CDC4) also resulted in abnormal sister chromatid cohesion in human cells. These results suggest that defective sister chromatid cohesion as a result of somatic mutations may represent a major cause of chromosome instability in human cancers.


Journal of Biological Chemistry | 2008

Catalytic Function of the PR-Set7 Histone H4 Lysine 20 Monomethyltransferase Is Essential for Mitotic Entry and Genomic Stability

Sabrina I. Houston; Kirk J. McManus; Melissa M. Adams; Jennifer K. Sims; Phillip B. Carpenter; Michael J. Hendzel; Judd C. Rice

Histone-modifying enzymes play a critical role in modulating chromatin dynamics. In this report we demonstrate that one of these enzymes, PR-Set7, and its corresponding histone modification, the monomethylation of histone H4 lysine 20 (H4K20), display a distinct cell cycle profile in mammalian cells: low at G1, increased during late S phase and G2, and maximal from prometaphase to anaphase. The lack of PR-Set7 and monomethylated H4K20 resulted in a number of aberrant phenotypes in several different mammalian cell types. These include the inability of cells to progress past G2, global chromosome condensation failure, aberrant centrosome amplification, and substantial DNA damage. By employing a catalytically dead dominant negative PR-Set7 mutant, we discovered that its mono-methyltransferase activity was required to prevent these phenotypes. Importantly, we demonstrate that all of the aberrant phenotypes associated with the loss of PR-Set7 enzymatic function occur independently of p53. Collectively, our findings demonstrate that PR-Set7 enzymatic activity is essential for mammalian cell cycle progression and for the maintenance of genomic stability, most likely by monomethylating histone H4K20. Our results predict that alterations of this pathway could result in gross chromosomal aberrations and aneuploidy.


Biochemistry and Cell Biology | 2001

CBP, a transcriptional coactivator and acetyltransferase.

Kirk J. McManus; Michael J. Hendzel

The CREB binding protein (CBP) was first identified as a protein that specifically binds to the active phosphorylated form of the cyclic-AMP response element binding protein (CREB). CBP was initially defined as a transcriptional coactivator that, as a result of its large size and multiple protein binding domain modules, may function as a molecular scaffold. More recently, an acetyltransferase activity, both of histones and nonhistones, has been found to be essential for transactivation. In this review, we will discuss the current understanding of the acetyltransferase specificity and activity of the CBP protein and how it may function to coactivate transcription. We will also examine the regulation of the CBP histone acetyltransferase activity in the cell cycle, by signal-transduction pathways and throughout development.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing

Kirk J. McManus; Irene J. Barrett; Yasaman Nouhi; Philip Hieter

Mutations that cause chromosome instability (CIN) in cancer cells produce “sublethal” deficiencies in an essential process (chromosome segregation) and, therefore, may represent a major untapped resource that could be exploited for therapeutic benefit in the treatment of cancer. If second-site unlinked genes can be identified, that when knocked down, cause a synthetic lethal (SL) phenotype in combination with a somatic mutation in a CIN gene, novel candidate therapeutic targets will be identified. To test this idea, we took a cross species SL candidate gene approach by recapitulating a SL interaction observed between rad54 and rad27 mutations in yeast, via knockdown of the highly sequence- and functionally-related proteins RAD54B and FEN1 in a cancer cell line. We show that knockdown of RAD54B, a gene known to be somatically mutated in cancer, causes CIN in mammalian cells. Using high-content microscopy techniques, we demonstrate that RAD54B-deficient human colorectal cancer cells are sensitive to SL killing by reduced FEN1 expression, while isogenic RAD54B proficient cells are not. This conserved SL interaction suggests that extrapolating SL interactions observed in model organisms for homologous genes mutated in human cancers will aid in the identification of novel therapeutic targets for specific killing of cancerous cells exhibiting CIN.


Molecular and Cellular Biology | 2003

Quantitative Analysis of CBP- and P300-Induced Histone Acetylations In Vivo Using Native Chromatin

Kirk J. McManus; Michael J. Hendzel

ABSTRACT In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.


Journal of Biological Chemistry | 2006

Dynamic Changes in Histone H3 Lysine 9 Methylations IDENTIFICATION OF A MITOSIS-SPECIFIC FUNCTION FOR DYNAMIC METHYLATION IN CHROMOSOME CONGRESSION AND SEGREGATION

Kirk J. McManus; Vincent L. Biron; Ryan Heit; D. Alan Underhill; Michael J. Hendzel

Histone methylation is unique among post-translational histone modifications by virtue of its stability. It is thought to be a relatively stable and heritable epigenetic mark for gene-specific regulation. In this study, we use quantitative in situ approaches to investigate the cell cycle dynamics of methylated isoforms of histone H3 lysine 9. Contrary to the expected stability of trimethylated lysines, our results for trimethylated lysine 9 (tMeK9) of H3 demonstrate that the genomic content of this methylation undergoes significant changes as cells progress through mitosis. Unexpectedly, there is a loss of tMeK9 that appears to reflect a robust demethylase activity that is active during the period between anaphase and cytokinesis. Subsequent investigations of mitoses in tMeK9-deficient cells revealed defects in chromosome congression and segregation that are distinct from the increased cohesion at centromeres previously reported in association with the loss of tMeK9. Collectively, these results identify a mitosis-specific trimethylation of Lys9 in pericentromeric heterochromatin that functions in the faithful segregation of chromosomes.


PLOS Genetics | 2013

An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development.

Derek M. van Pel; Irene J. Barrett; Yoko Shimizu; Babu V. Sajesh; Brent J. Guppy; Tom A. Pfeifer; Kirk J. McManus; Philip Hieter

Harnessing genetic differences between cancerous and noncancerous cells offers a strategy for the development of new therapies. Extrapolating from yeast genetic interaction data, we used cultured human cells and siRNA to construct and evaluate a synthetic lethal interaction network comprised of chromosome instability (CIN) genes that are frequently mutated in colorectal cancer. A small number of genes in this network were found to have synthetic lethal interactions with a large number of cancer CIN genes; these genes are thus attractive targets for anticancer therapeutic development. The protein product of one highly connected gene, the flap endonuclease FEN1, was used as a target for small-molecule inhibitor screening using a newly developed fluorescence-based assay for enzyme activity. Thirteen initial hits identified through in vitro biochemical screening were tested in cells, and it was found that two compounds could selectively inhibit the proliferation of cultured cancer cells carrying inactivating mutations in CDC4, a gene frequently mutated in a variety of cancers. Inhibition of flap endonuclease activity was also found to recapitulate a genetic interaction between FEN1 and MRE11A, another gene frequently mutated in colorectal cancers, and to lead to increased endogenous DNA damage. These chemical-genetic interactions in mammalian cells validate evolutionarily conserved synthetic lethal interactions and demonstrate that a cross-species candidate gene approach is successful in identifying small-molecule inhibitors that prove effective in a cell-based cancer model.


PLOS Genetics | 2010

Proteasome Nuclear Activity Affects Chromosome Stability by Controlling the Turnover of Mms22, a Protein Important for DNA Repair

Shay Ben-Aroya; Neta Agmon; Karen Yuen; Teresa Kwok; Kirk J. McManus; Martin Kupiec; Philip Hieter

To expand the known spectrum of genes that maintain genome stability, we screened a recently released collection of temperature sensitive (Ts) yeast mutants for a chromosome instability (CIN) phenotype. Proteasome subunit genes represented a major functional group, and subsequent analysis demonstrated an evolutionarily conserved role in CIN. Analysis of individual proteasome core and lid subunit mutations showed that the CIN phenotype at semi-permissive temperature is associated with failure of subunit localization to the nucleus. The resultant proteasome dysfunction affects chromosome stability by impairing the kinetics of double strand break (DSB) repair. We show that the DNA repair protein Mms22 is required for DSB repair, and recruited to chromatin in a ubiquitin-dependent manner as a result of DNA damage. Moreover, subsequent proteasome-mediated degradation of Mms22 is necessary and sufficient for cell cycle progression through the G2/M arrest induced by DNA damage. Our results demonstrate for the first time that a double strand break repair protein is a proteasome target, and thus link nuclear proteasomal activity and DSB repair.


PLOS Genetics | 2011

Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5

Daphne W. Bell; Nilabja Sikdar; Kyoo-young Lee; Jessica C. Price; Raghunath Chatterjee; Hee-Dong Park; Jennifer T. Fox; Masamichi Ishiai; Meghan L. Rudd; Lana M. Pollock; Sarah Fogoros; Hassan Mohamed; Christin L. Hanigan; Nisc Comparative Sequencing Program; Suiyuan Zhang; Pedro Cruz; Gabriel Renaud; Nancy F. Hansen; Praveen F. Cherukuri; Bhavesh Borate; Kirk J. McManus; Jan Stoepel; Payal Sipahimalani; Andrew K. Godwin; Dennis C. Sgroi; Maria J. Merino; Gene Elliot; Abdel G. Elkahloun; Charles Vinson; Minoru Takata

ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5+/m) mice that were haploinsuffficient for Atad5. Atad5+/m mice displayed high levels of genomic instability in vivo, and Atad5+/m mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5+/m mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5+/m mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis.


Genetics | 2013

Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells.

Babu V. Sajesh; Melanie L. Bailey; Zelda Lichtensztejn; Philip Hieter; Kirk J. McManus

Synthetic lethality is a rational approach to identify candidate drug targets for selective killing of cancer cells harboring somatic mutations that cause chromosome instability (CIN). To identify a set of the most highly connected synthetic lethal partner genes in yeast for subsequent testing in mammalian cells, we used the entire set of 692 yeast CIN genes to query the genome-wide synthetic lethal datasets. Hierarchical clustering revealed a highly connected set of synthetic lethal partners of yeast genes whose human orthologs are somatically mutated in colorectal cancer. Testing of a small matrix of synthetic lethal gene pairs in mammalian cells suggested that members of a pathway that remove reactive oxygen species that cause DNA damage would be excellent candidates for further testing. We show that the synthetic lethal interaction between budding yeast rad54 and sod1 is conserved within a human colorectal cancer context. Specifically, we demonstrate RAD54B-deficient cells are selectively killed relative to controls via siRNA-based silencing and chemical inhibition and further demonstrate that this interaction is conserved in an unrelated cell type. We further show that the DNA double strand breaks, resulting from increased reactive oxygen species following SOD1 inhibition, persist within the RAD54B-deficient cells and result in apoptosis. Collectively, these data identify SOD1 as a novel candidate cancer drug target and suggest that SOD1 inhibition may have broad-spectrum applicability in a variety of tumor types exhibiting RAD54B deficiencies.

Collaboration


Dive into the Kirk J. McManus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Hieter

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge