Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirk N. Campbell is active.

Publication


Featured researches published by Kirk N. Campbell.


Nature Medicine | 2008

The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A

Christian Faul; Mary E. Donnelly; Sandra Merscher-Gomez; Yoon Hee Chang; Stefan Franz; Jacqueline Delfgaauw; Jer Ming Chang; Hoon Young Choi; Kirk N. Campbell; Kwanghee Kim; Jochen Reiser; Peter Mundel

The immunosuppressive action of the calcineurin inhibitor cyclosporine A (CsA) stems from the inhibition of nuclear factor of activated T cells (NFAT) signaling in T cells. CsA is also used for the treatment of proteinuric kidney diseases. As it stands, the antiproteinuric effect of CsA is attributed to its immunosuppressive action. Here we show that the beneficial effect of CsA on proteinuria is not dependent on NFAT inhibition in T cells, but rather results from the stabilization of the actin cytoskeleton in kidney podocytes. CsA blocks the calcineurin-mediated dephosphorylation of synaptopodin, a regulator of Rho GTPases in podocytes, thereby preserving the phosphorylation-dependent synaptopodin–14-3-3β interaction. Preservation of this interaction, in turn, protects synaptopodin from cathepsin L–mediated degradation. These results represent a new view of calcineurin signaling and shed further light on the treatment of proteinuric kidney diseases. Novel calcineurin substrates such as synaptopodin may provide promising starting points for antiproteinuric drugs that avoid the serious side effects of long-term CsA treatment.


The New England Journal of Medicine | 2013

Abatacept in B7-1–Positive Proteinuric Kidney Disease

Chih Chuan Yu; Alessia Fornoni; Astrid Weins; Samy Hakroush; Dony Maiguel; Junichiro Sageshima; Linda Chen; Gaetano Ciancio; Mohd Hafeez Faridi; Daniel Behr; Kirk N. Campbell; Jer Ming Chang; Hung Chun Chen; Jun Oh; Christian Faul; M. Amin Arnaout; Paolo Fiorina; Vineet Gupta; Anna Greka; George W. Burke; Peter Mundel

Abatacept (cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin fusion protein [CTLA-4-Ig]) is a costimulatory inhibitor that targets B7-1 (CD80). The present report describes five patients who had focal segmental glomerulosclerosis (FSGS) (four with recurrent FSGS after transplantation and one with primary FSGS) and proteinuria with B7-1 immunostaining of podocytes in kidney-biopsy specimens. Abatacept induced partial or complete remissions of proteinuria in these patients, suggesting that B7-1 may be a useful biomarker for the treatment of some glomerulopathies. Our data indicate that abatacept may stabilize β1-integrin activation in podocytes and reduce proteinuria in patients with B7-1-positive glomerular disease.


American Journal of Physiology-renal Physiology | 2010

Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids

Jonas Sieber; Maja T. Lindenmeyer; Kapil Kampe; Kirk N. Campbell; Clemens D. Cohen; Helmut Hopfer; Peter Mundel; Andreas Werner Jehle

Apoptosis of podocytes is considered critical in the pathogenesis of diabetic nephropathy (DN). Free fatty acids (FFAs) are critically involved in the pathogenesis of diabetes mellitus type 2, in particular the regulation of pancreatic β cell survival. The objectives of this study were to elucidate the role of palmitic acid, palmitoleic, and oleic acid in the regulation of podocyte cell death and endoplasmic reticulum (ER) stress. We show that palmitic acid increases podocyte cell death, both apoptosis and necrosis of podocytes, in a dose and time-dependent fashion. Palmitic acid induces podocyte ER stress, leading to an unfolded protein response as reflected by the induction of the ER chaperone immunoglobulin heavy chain binding protein (BiP) and proapoptotic C/EBP homologous protein (CHOP) transcription factor. Of note, the monounsaturated palmitoleic and oleic acid can attenuate the palmitic acid-induced upregulation of CHOP, thereby preventing cell death. Similarly, gene silencing of CHOP protects against palmitic acid-induced podocyte apoptosis. Our results offer a rationale for interventional studies aimed at testing whether dietary shifting of the FFA balance toward unsaturated FFAs can delay the progression of DN.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes

Katsuhiko Asanuma; Kirk N. Campbell; Kwanghee Kim; Christian Faul; Peter Mundel

Kidney podocytes and their slit diaphragms (SDs) form the final barrier to urinary protein loss. There is mounting evidence that SD proteins also participate in intracellular signaling pathways. The SD protein nephrin serves as a component of a signaling complex that directly links podocyte junctional integrity to actin cytoskeletal dynamics. Another SD protein, CD2-associated protein (CD2AP), is an adaptor molecule involved in podocyte homeostasis that can repress proapoptotic TGF-β signaling in podocytes. Here we show that dendrin, a protein originally identified in telencephalic dendrites, is a constituent of the SD complex, where it directly binds to nephrin and CD2AP. In experimental glomerulonephritis, dendrin relocates from the SD to the nucleus of injured podocytes. High-dose, proapoptotic TGF-β1 directly promotes the nuclear import of dendrin, and nuclear dendrin enhances both staurosporine- and TGF-β1-mediated apoptosis. In summary, our results identify dendrin as an SD protein with proapoptotic signaling properties that accumulates in the podocyte nucleus in response to glomerular injury and provides a molecular target to tackle proteinuric kidney diseases. Nuclear relocation of dendrin may provide a mechanism whereby changes in SD integrity could translate into alterations of podocyte survival under pathological conditions.


Current Diabetes Reviews | 2011

Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes.

Kirk N. Campbell; Leopoldo Raij; Peter Mundel

Diabetic kidney disease is the leading cause of end-stage renal disease worldwide. Podocytes are highly differentiated, pericyte-like cells that are essential for normal function of the kidney filter. Loss of podocytes is a hallmark of progressive kidney diseases including diabetic nephropathy. Podocytes are a direct target for angiotensin II - mediated injury by altered expression and distribution of podocyte proteins. Additionally, angiotensin II promotes podocyte injury indirectly by increasing calcium influx and production of reactive oxygen species. Notwithstanding the convincing rationale for angiotensin II blockade as a treatment modality, the incidence of diabetes-related end stage renal disease has increased steadily despite widespread use of angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Recently published clinical trials have rekindled a debate on the safety and efficacy of dual blockade of the renin-angiotensin system (RAS). This review summarizes the rationale for blockade of angiotensin II as a therapeutic target in treating diabetic kidney disease, including the critical role played by podocytes. Recent relevant clinical trials on the role of RAS blockade in the treatment of diabetic kidney disease are discussed.


Journal of Clinical Investigation | 2010

Modeling metastasis biology and therapy in real time in the mouse lung

Arnulfo Mendoza; Sung-Hyeok Hong; Tanasa Osborne; Mohammed A. Khan; Kirk N. Campbell; Joseph Briggs; Ananth Eleswarapu; Lauren Buquo; Ling Ren; Stephen M. Hewitt; El-H. Dakir; Susan Garfield; Renard C. Walker; Glenn Merlino; Jeffrey Green; Kent W. Hunter; Lalage M. Wakefield; Chand Khanna

Pulmonary metastasis remains the leading ca use of death for cancer patients. Opportunities to improve treatment outcomes for patients require new methods to study and view the biology of metastatic progression. Here, we describe an ex vivo pulmonary metastasis assay (PuMA) in which the metastatic progression of GFP-expressing cancer cells, from a single cell to the formation of multicellular colonies, in the mouse lung microenvironment was assessed in real time for up to 21 days. The biological validity of this assay was confirmed by its prediction of the in vivo behavior of a variety of high- and low-metastatic human and mouse cancer cell lines and the discrimination of tumor microenvironments in the lung that were most permissive to metastasis. Using this approach, we provide what we believe to be new insights into the importance of tumor cell interactions with the stromal components of the lung microenvironment. Finally, the translational utility of this assay was demonstrated through its use in the evaluation of therapeutics at discrete time points during metastatic progression. We believe that this assay system is uniquely capable of advancing our understanding of both metastasis biology and therapeutic strategies.


Journal of Biological Chemistry | 2013

Yes-associated Protein (YAP) Promotes Cell Survival by Inhibiting Proapoptotic Dendrin Signaling

Kirk N. Campbell; Jenny S. Wong; Ritu Gupta; Katsuhiko Asanuma; Marius Sudol; John Cijiang He; Peter Mundel

Background: Dendrin can relocate from the cytoplasm to the nucleus to promote podocyte apoptosis. Results: YAP is constitutively expressed in podocyte nuclei, binds to dendrin, and inhibits dendrin-mediated podocyte apoptosis. Conclusion: YAP binding to dendrin promotes podocyte survival by inhibiting proapoptotic dendrin signaling. Significance: YAP could serve as a physiologic inhibitor of podocyte apoptosis and may open avenues for the development of podocyte protective therapies. Kidney podocytes are highly specialized terminally differentiated cells that form the final barrier to urinary protein loss. Podocytes are a target for injury by metabolic, autoimmune, hereditary, inflammatory, and other stressors. Persistence of podocyte injury leads to podocyte death and loss, which results in progressive kidney damage and ultimately kidney failure. Dendrin is a dual compartment protein with proapoptotic signaling properties. Nuclear relocation of dendrin in response to glomerular injury promotes podocyte apoptosis. Here we show that Yes-associated protein (YAP), a downstream target of Hippo kinases and an inhibitor of apoptosis, is expressed in the nucleus of podocytes. The WW domains of YAP mediate the interaction with the PPXY motifs of dendrin. This interaction is functionally relevant because YAP binding to dendrin reduces dendrin-dependent, staurosporine-induced apoptosis in co-transfected HEK293 cells. Moreover gene silencing of YAP in podocytes increases adriamycin-induced podocyte apoptosis. It also increases staurosporine-induced caspase-3/7 activity, which is rescued by dendrin depletion in YAP knockdown cells. Our findings elucidate YAP binding to dendrin as a prosurvival mechanism. The antiapoptotic signaling properties of YAP in podocytes could hold significance in the quest for targeted therapeutics aimed at preventing podocyte loss.


Journal of The American Society of Nephrology | 2016

Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure

Monica Schwartzman; Antoine Reginensi; Jenny S. Wong; John M. Basgen; Kristin Meliambro; Susanne B. Nicholas; Helen McNeill; Kirk N. Campbell

FSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases. We previously identified Yes-associated protein (YAP) as a prosurvival signaling molecule, the in vitro silencing of which increases podocyte susceptibility to apoptotic stimulus. YAP is a potent oncogene that is a prominent target for chemotherapeutic drug development. In this study, we tested the hypothesis that podocyte-specific deletion of Yap leads to proteinuric kidney disease through increased podocyte apoptosis. Yap was selectively silenced in podocytes using Cre-mediated recombination controlled by the podocin promoter. Yap silencing in podocytes resulted in podocyte apoptosis, podocyte depletion, proteinuria, and an increase in serum creatinine. Histologically, features characteristic of FSGS, including mesangial sclerosis, podocyte foot process effacement, tubular atrophy, interstitial fibrosis, and casts, were observed. In human primary FSGS, we noted reduced glomerular expression of YAP. Taken together, these results suggest a role for YAP as a physiologic antagonist of podocyte apoptosis, the signaling of which is essential for maintaining the integrity of the glomerular filtration barrier. These data suggest potential nephrotoxicity with strategies directed toward inhibition of YAP function. Further studies should evaluate the role of YAP in proteinuric glomerular disease pathogenesis and its potential utility as a therapeutic target.


International Journal of Nephrology and Renovascular Disease | 2015

Inhibition of RAS in diabetic nephropathy

Rabi Yacoub; Kirk N. Campbell

Diabetic kidney disease (DKD) is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS) is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII), the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population.


Journal of Clinical Investigation | 2014

Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis–associated glomerular injury

Uma Potla; Jie Ni; Justin Vadaparampil; Guozhe Yang; Jeremy S. Leventhal; Kirk N. Campbell; Peter Y. Chuang; Alexei Morozov; John Cijiang He; Vivette D. D’Agati; Paul E. Klotman; Lewis Kaufman

Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin-mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin.

Collaboration


Dive into the Kirk N. Campbell's collaboration.

Top Co-Authors

Avatar

John Cijiang He

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kristin Meliambro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny S. Wong

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lewis Kaufman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Paolo Cravedi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Schwartzman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge