Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirk P. Smith is active.

Publication


Featured researches published by Kirk P. Smith.


Scientific Investigations Report | 2013

Water-quality conditions, and constituent loads and yields in the Cambridge drinking-water source area, Massachusetts, water years 2005–07

Kirk P. Smith

The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of ongoing development in the drinking-water source area, the Cambridge water supply has the potential to be affected by a wide variety of contaminants. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Hobbs Brook and Stony Brook Basins, which compose the drinking-water source area, since 1997 (water year 1997) through continuous monitoring and discrete sample collection and, since 2004, through systematic collection of streamwater samples during base-flow and stormflow conditions at five primary sampling stations in the drinking-water source area. Four primary sampling stations are on small tributaries in the Hobbs Brook and Stony Brook Basins; the fifth primary sampling station is on the main stem of Stony Brook and drains about 93 percent of the Cambridge drinking-water source area. Water samples also were collected at six secondary sampling stations, including Fresh Pond Reservoir, the final storage reservoir for the raw water supply. Storm runoff and base-flow concentrations of calcium (Ca), chloride (Cl), sodium (Na), and sulfate (SO4) were estimated from continuous records of streamflow and specific conductance for six monitoring stations, which include the five primary sampling stations. These data were used to characterize current water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Hobbs Brook and Stony Brook Basins. These data also were used to describe how streamwater quality is affected by various watershed characteristics and provide information to guide future watershed management. Water samples were analyzed for physical properties and concentrations of Ca, Cl, Na, and SO4, total nitrogen (TN), total phosphorus (TP), caffeine, and a suite of 59 polar pesticides. Values of physical properties and constituent concentrations varied widely, particularly in samples from tributaries. Median concentrations of Ca, Cl, Na, and SO4 in samples collected in the Hobbs Brook Basin (39.8, 392, 207, and 21.7 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Basin (17.8, 87.7, 49.7, and 14.7 mg/L, respectively). These differences in major ion concentrations are likely related to the low percentages of developed land and impervious area in the Stony Brook Basin. Concentrations of dissolved Cl and Na in samples, and those estimated from continuous records of specific conductance (particularly during base flow), often were greater than the U.S. Environmental Protection Agency (USEPA) secondary drinking-water guideline for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs drinking-water guideline for Na (20 mg/L). Mean annual flow-weighted concentrations of Ca, Cl, and Na were generally positively correlated with the area of roadway land use in the subbasins. Correlations between mean annual concentrations of Ca and SO4 in base flow and total roadway, total impervious, and commercial-industrial land uses were statistically significant. Concentrations of TN (range of 0.42 to 5.13 mg/L in all subbasins) and TP (range of 0.006 to 0.80 mg/L in all subbasins) in tributary samples did not differ substantially between the Hobbs Brook and Stony Brook Basins. Concentrations of TN and TP in samples collected during water years 2004–07 exceeded proposed reference concentrations of 0.57 and 0.024 mg/L, in 94 and 56 percent of the samples, respectively. Correlations between annual flow-weighted concentrations of TN and percentages of recreational land use and water-body area were statistically significant; however, no significant relation was found between TP and available land-use information. The volume of streamflow affected water-quality conditions at the primary sampling stations. Turbidity and concentrations of TP were positively correlated with streamflow. In contrast, concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflows. Concentrations of TN were not correlated with streamflow. Twenty-five pesticides and caffeine were detected in water samples collected in the drinking-water source area and 2 Water Quality in the Cambridge Drinking-Water Source Area, Massachusetts, Water Years 2005–07 in raw water collected from the Cambridge water-treatment facility intake at the Fresh Pond Reservoir. Imidacloprid, norflurazon, and siduron were the most frequently detected pesticides with the frequency of detections ranging from about 24 to 41 percent. Caffeine was detected in about 64 percent of water samples at concentrations ranging from 0.003 to 1.82 micrograms per liter (μg/L). Although some of the detected pesticides degrade rapidly, norflurazon and siduron are relatively stable and are able to immigrate though the serial reservoir system. Concentrations of 2,4-D, carbaryl, imazaquin, MCPA (2-methyl-4-chlorophenoxyacetic acid), metsulfuron-methyl, norflurazon, siduron, and caffeine were detected more frequently in stormflow samples than in baseflow samples. Concentrations of pesticides did not exceed USEPA drinking-water guidelines or other health standards and were several orders of magnitude less than the lethal exposure level established for several fish species common to the drinking-water source area. Imidacloprid, an insecticide, was the only pesticide with a concentration exceeding available long-term aquatic-life guidelines. Several pesticides correlated significantly with the amount of recreational, residential, and commercial area in the tributary subbasins. Mean annual baseflow concentrations of caffeine correlated significantly with parking-lot land use. For most tributaries, about 70 percent of the annual loads of Ca, Cl, Na, and SO4 were associated with base flow. Upward temporal trends in annual loads of Cl and Na were identified on the basis of data for water years 1998 to 2008 for the outlet of the Cambridge Reservoir in the Hobbs Brook Basin; however, similar trends were not identified for the main stem of Stony Brook downstream from the reservoir. The proportions of the TN load attributed to base flow and stormflow were similar in each tributary. In contrast, more than 83 percent of the TP loads in the tributaries and about 73 percent of the TP load in main stem of Stony Brook were associated with stormflow. Mean annual yields of Ca, Cl, Na, and SO4 in the Stony Brook Reservoir watershed, which represents most of the drinking-water source area, were 14, 85, 46, and 9 metric tons per square kilometer, respectively. Mean annual yields among the individual tributary subbasins varied extensively. Mean annual yields for the respective constituents increased with an increase in roadway and parking-lot area in the tributary subbasins. Mean annual yields of TN in the tributary subbasins ranged from about 740 to more than 1,200 kilograms per square kilometer and exceeded the yield for the main stem of Stony Brook at USGS station 01104460 upstream from the Stony Brook Reservoir. Mean annual yields estimated for the herbicides 2,4-D and imidacloprid ranged from 34 to 310 grams per square kilometer (g/km2) and 3 to 170 g/km2, respectively. Annual loads for 2,4-D were entirely associated with stormflow. The largest annual load for imidacloprid was estimated for the main stem of Stony Brook; however, the highest annual yield for this pesticide, as well as for benomyl, carbaryl, metalaxyl, and propiconazole, was estimated for a tributary to the Stony Brook Reservoir that drains largely residential and recreational areas. Mean annual yields for the herbicide siduron ranged from 6.9 to 35 g/km2 with most of the loads associated with stormflow. Mean annual yields for the insecticide diuron ranged from 2.1 to 4.4 g/km2. Annual yields of caffeine ranged from 11 to 410 g/km2. Introduction The city of Cambridge, Massachusetts supplies approximately 15 million gallons per day (Waldron and Bent, 2001) of drinking water to more than 100,000 customers. The Cambridge Water Department (CWD) obtains raw water from a serial system of three primary storage reservoirs. These reservoirs receive inflow from a drainage area of 61.4 square kilometers (km2) (henceforth, the drinking-water source area) that is outside Cambridge; in parts of the towns of Lexington, Lincoln, and Weston; and in part of the city of Waltham (fig. 1). Only about 5 percent of the land in the drinking-water source area is owned by the city of Cambridge. Major transportation corridors (Interstate 95, Routes 2, 2A, 20, and 117), as well as large areas of industrial, commercial, and residential land use, are within the drinking-water source area. Effective management of the drinking-water source area requires an understanding of how streamwater quality is affected by natural and cultural watershed factors. Drought and severe weather are examples of natural factors, whereas the amount of impervious area and application of pesticides are cultural factors. Because of the diverse land use within the drinking-water source area, there is a large number of constituents with varied transport mechanisms that could potentially enter the drinking-water supply. In 1997, the U.S. Geological Survey (USGS), in cooperation with the CWD, began operation of continuous waterquality monitoring stations (streamflow, water temperature, and specific conductance) at various locations in the drinking-water source area (Smith, 2005, 2007, 2008, and 2011; Socolow and others, 1999, 2000, 2001, 2002, 2003, and 2004; U.S. Geological Survey, 2009). In 2004, the USGS, in cooperation with the CWD, established a program to characterize water quality


Chemical and Biological Early Warning Monitoring for Water, Food, and Ground | 2002

Automated ground-water monitoring with robowell-Case studies and potential applications

Gregory E. Granato; Kirk P. Smith

Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/


Scientific Investigations Report | 2017

Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

Kirk P. Smith

The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of streamflow samples. In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and mainstem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area. Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154.5, and 2.8 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Reservoir Basin (22.2, 128, 4.3, 77.1, and 2.5, respectively). Differences between tributary samples for concentrations of Cl and Na were related to the percentage of developed land and constructed impervious area in the drinking-water source area. Median concentrations of SO4 in samples collected from the tributaries in the Cambridge Reservoir Basin (10.7 mg/L) were lower than those for the Stony Brook Reservoir Basin (18.0 mg/L). Concentrations of dissolved Cl and Na in samples and those concentrations estimated from continuous records of specific conductance (particularly during base flow) often were greater than the U.S. Environmental Protection Agency (EPA) secondary drinking-water standard for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Massachusetts Department of Environmental Protection drinking-water guideline for Na (20 mg/L). Concentrations of TP (range from 0.008 to 0.69 mg/L in all subbasins) in tributary samples did not differ substantially between the Cambridge Reservoir and Stony Brook Reservoir Basins. About one-half of the concentrations of TP in samples collected during water years 2013–15 exceeded the EPA proposed reference concentration of 0.024 mg/L. For most tributaries, about 70 percent of the annual loads of Ca, Cl, Mg, Na, and SO4 were associated with base flow. Concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflow and tend to increase during the summer when streamflow is low. In contrast, between 57 and 92 percent of the annual load for TP was transported during stormflows. Mean annual yields of Ca, Cl, Mg, Na, and SO4 in the drinking-water source area were 13, 75, 2.6, 40, and 6.9 metric tons per square kilometer, respectively, for water years 2009–15. The mean annual yield of TP in the drinking-water source area for water years 2013–15 was 0.012 metric tons per square kilometer. Yields for major ions and TP were highest in tributary subbasins adjacent to Interstate 95. Temporal trends in mean annual concentrations for Cl and Na were not significant for water years 1998‒2015 (period of record by the USGS) for the outlet of the Cambridge Reservoir and for the main stem of Stony Brook downstream from the reservoir. Median values of base-flow concentrations of TP at three stations were higher for samples collected during base-flow conditions during water years 2005–7 than for samples collected during water years 2013–15. However, the results were not significant for statistical tests between concentrations in samples collected during storms for the same periods, indicating that the quality of stormwater remains similar. 2 Deicing Compounds and Total Phosphorus in the Cambridge Drinking-Water Source Area, Mass., Water Years 2009–15


Archive | 1998

Automated groundwater monitoring system and method

Gregory E. Granato; Kirk P. Smith


Water-Resources Investigations Report | 1999

Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance

Gregory E. Granato; Kirk P. Smith


Archive | 2001

Automated self-calibrating water quality monitoring sensor housing assembly

Kirk P. Smith; Gregory E. Granato


Ground Water Monitoring and Remediation | 1999

Robowell: An Automated Process for Monitoring Ground Water Quality Using Established Sampling Protocols

Gregory E. Granato; Kirk P. Smith


Scientific Investigations Report | 2010

Quality of stormwater runoff discharged from Massachusetts highways, 2005-07

Kirk P. Smith; Gregory E. Granato


Water-Resources Investigations Report | 2002

Effectiveness of Three Best Management Practices for Highway-Runoff Quality along the Southeast Expressway, Boston, Massachusetts

Kirk P. Smith


Fact Sheet | 2002

Robowell - Providing Accurate and Current Water-Level and Water-Quality Data in Real Time for Protecting Ground-Water Resources

Gregory E. Granato; Kirk P. Smith

Collaboration


Dive into the Kirk P. Smith's collaboration.

Top Co-Authors

Avatar

Gregory E. Granato

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge