Kirk R. Henne
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirk R. Henne.
Journal of Medicinal Chemistry | 2015
Timothy D. Cushing; Xiaolin Hao; Youngsook Shin; Kristin L. Andrews; Matthew Frank Brown; Mario G. Cardozo; Yi Chen; Jason Duquette; Ben Fisher; Felix Gonzalez-Lopez de Turiso; Xiao He; Kirk R. Henne; Yi-Ling Hu; Randall W. Hungate; Michael G. Johnson; Ron C. Kelly; Brian Lucas; John D. McCarter; Lawrence R. McGee; Julio C. Medina; Tisha San Miguel; Deanna Mohn; Vatee Pattaropong; Liping H. Pettus; Andreas Reichelt; Robert M. Rzasa; Jennifer Seganish; Andrew Tasker; Robert C. Wahl; Sharon Wannberg
The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.
Journal of Medicinal Chemistry | 2012
Felix Gonzalez-Lopez de Turiso; Youngsook Shin; Matthew Frank Brown; Mario G. Cardozo; Yi Chen; David Fong; Xiaolin Hao; Xiao He; Kirk R. Henne; Yi-Ling Hu; Michael G. Johnson; Todd J. Kohn; Julia Winslow Lohman; Helen J. McBride; Lawrence R. McGee; Julio C. Medina; Daniela Metz; Kent Miner; Deanna Mohn; Vatee Pattaropong; Jennifer Seganish; Jillian L. Simard; Sharon Wannberg; Douglas A. Whittington; Gang Yu; Timothy D. Cushing
Structure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue 63 was a potent and selective PI3Kβ/δ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis. These studies highlight the potential therapeutic value of inhibiting both the PI3Kβ and δ isoforms in the treatment of a number of inflammatory diseases.
Drug Metabolism and Disposition | 2012
Kirk R. Henne; Thuy Tran; Brooke M. VandenBrink; Dan A. Rock; Divesh Aidasani; Raju Subramanian; Andrew K. Mason; David M. Stresser; Yohannes Teffera; Simon Wong; Michael G. Johnson; Xiaoqi Chen; George Tonn; Bradley K. Wong
CYP3A4-mediated biotransformation of (R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-N-(pyridin-3-ylmethyl)-2-(4-(trifluoromethoxy)phenyl)acetamide (AMG 487) was previously shown to generate an inhibitory metabolite linked to dose- and time-dependent pharmacokinetics in humans. Although in vitro activity loss assays failed to demonstrate CYP3A4 time-dependent inhibition (TDI) with AMG 487, its M2 phenol metabolite readily produced TDI when remaining activity was assessed using either midazolam or testosterone (KI = 0.73–0.74 μM, kinact = 0.088–0.099 min−1). TDI investigations using an IC50 shift method successfully produced inhibition attributable to AMG 487, but only when preincubations were extended from 30 to 90 min. The shift magnitude was ∼3× for midazolam activity, but no shift was observed for testosterone activity. Subsequent partition ratio determinations conducted for M2 using recombinant CYP3A4 showed that inactivation was a relatively inefficient process (r = 36). CYP3A4-mediated biotransformation of [3H]M2 in the presence of GSH led to identification of two new metabolites, M4 and M5, which shifted focus away from M2 being directly responsible for TDI. M4 (hydroxylated M2) was further metabolized to form reactive intermediates that, upon reaction with GSH, produced isomeric adducts, collectively designated M5. Incubations conducted in the presence of [18O]H2O confirmed incorporation of oxygen from O2 for the majority of M4 and M5 formed (>75%). Further evidence of a primary role for M4 in CYP3A4 TDI was generated by protein labeling and proteolysis experiments, in which M4 was found to be covalently bound to Cys239 of CYP3A4. These investigations confirmed a primarily role for M4 in CYP3A4 inactivation, suggesting that a more complex metabolic pathway was responsible for generation of inhibitory metabolites affecting AMG 487 human pharmacokinetics.
Journal of Medicinal Chemistry | 2016
Youngsook Shin; Julia Suchomel; Mario G. Cardozo; Jason Duquette; Xiao He; Kirk R. Henne; Yi-Ling Hu; Ron C. Kelly; John D. McCarter; Lawrence R. McGee; Julio C. Medina; Daniela Metz; Tisha San Miguel; Deanna Mohn; Thuy Tran; Christine Vissinga; Simon Wong; Sharon Wannberg; Douglas A. Whittington; John S. Whoriskey; Gang Yu; Leeanne Zalameda; Xuxia Zhang; Timothy D. Cushing
Lead optimization efforts resulted in the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 1 (AM-8508) and 2 (AM-9635), with good pharmacokinetic properties. The compounds inhibit B cell receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based assays. These compounds which share a benzimidazole bicycle are effective when administered in vivo at unbound concentrations consistent with their in vitro cell potency as a consequence of improved unbound drug concentration with lower unbound clearance. Furthermore, the compounds demonstrated efficacy in a Keyhole Limpet Hemocyanin (KLH) study in rats, where the blockade of PI3Kδ activity by inhibitors 1 and 2 led to effective inhibition of antigen-specific IgG and IgM formation after immunization with KLH.
Journal of Medicinal Chemistry | 2016
Felix Gonzalez-Lopez de Turiso; Xiaolin Hao; Youngsook Shin; Minna Bui; Iain D. G. Campuzano; Mario G. Cardozo; Michelle C. Dunn; Jason Duquette; Benjamin Fisher; Robert S. Foti; Kirk R. Henne; Xiao He; Yi-Ling Hu; Ron C. Kelly; Michael G. Johnson; Brian Lucas; John D. McCarter; Lawrence R. McGee; Julio C. Medina; Daniela Metz; Tisha San Miguel; Deanna Mohn; Thuy Tran; Christine Vissinga; Sharon Wannberg; Douglas A. Whittington; John S. Whoriskey; Gang Yu; Leeanne Zalameda; Xuxia Zhang
Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either 6a or 7 resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development.
Current Drug Metabolism | 2005
Amit S. Kalgutkar; Iain Gardner; R. Scott Obach; Christopher L. Shaffer; Ernesto Callegari; Kirk R. Henne; Abdul Mutlib; Deepak Dalvie; Jae S. Lee; Yasuhiro Nakai; John P. O'Donnell; Jason Boer; Shawn P. Harriman
Drug Metabolism and Disposition | 2004
Amit S. Kalgutkar; Alfin D. N. Vaz; Mary E. Lame; Kirk R. Henne; John R. Soglia; Sabrina X. Zhao; Yuri A. Abramov; Franco Lombardo; Claire Collin; Zachary S. Hendsch; Cornelis E. C. A. Hop
Chemical Research in Toxicology | 2005
Brian R. Baer; Allan E. Rettie; Kirk R. Henne
Chemico-Biological Interactions | 2005
Amit S. Kalgutkar; Kirk R. Henne; Mary E. Lame; Alfin D. N. Vaz; Claire Collin; John R. Soglia; Sabrina X. Zhao; Cornelis E.C.A. Hop
Archive | 2005
Kirk R. Henne; John Charles Pfizer Global R D Kath; Ruby Anthea Szewc