Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirk W. Deitsch is active.

Publication


Featured researches published by Kirk W. Deitsch.


Molecular Cell | 2000

Mutations in the P. falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence for Their Role in Chloroquine Resistance

David A. Fidock; Takashi Nomura; Angela K. Talley; Roland A. Cooper; Sergey M. Dzekunov; Michael T. Ferdig; Lyann M. B. Ursos; Amar Bir Singh Sidhu; Bronwen Naudé; Kirk W. Deitsch; Xin-Zhuan Su; John C. Wootton; Paul D. Roepe; Thomas E. Wellems

The determinant of verapamil-reversible chloroquine resistance (CQR) in a Plasmodium falciparum genetic cross maps to a 36 kb segment of chromosome 7. This segment harbors a 13-exon gene, pfcrt, having point mutations that associate completely with CQR in parasite lines from Asia, Africa, and South America. These data, transfection results, and selection of a CQR line harboring a novel K761 mutation point to a central role for the PfCRT protein in CQR. This transmembrane protein localizes to the parasite digestive vacuole (DV), the site of CQ action, where increased compartment acidification associates with PfCRT point mutations. Mutations in PfCRT may result in altered chloroquine flux or reduced drug binding to hematin through an effect on DV pH.


Nature | 2000

Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum.

Lucio H. Freitas-Junior; Emmanuel Bottius; Lindsay Ann Pirrit; Kirk W. Deitsch; Christine Scheidig; Françoise Guinet; Ulf Nehrbass; Thomas E. Wellems; Artur Scherf

Persistent and recurrent infections by Plasmodium falciparum malaria parasites result from the ability of the parasite to undergo antigenic variation and evade host immune attack. P. falciparum parasites generate high levels of variability in gene families that comprise virulence determinants of cytoadherence and antigenic variation, such as the var genes. These genes encode the major variable parasite protein (PfEMP-1), and are expressed in a mutually exclusive manner at the surface of the erythrocyte infected by P. falciparum. Here we identify a mechanism by which var gene sequences undergo recombination at frequencies much higher than those expected from homologous crossover events alone. These recombination events occur between subtelomeric regions of heterologous chromosomes, which associate in clusters near the nuclear periphery in asexual blood-stage parasites or in bouquet-like configurations near one pole of the elongated nuclei in sexual parasite forms. We propose that the alignment of var genes in heterologous chromosomes facilitates gene conversion and promotes the diversity of antigenic and adhesive phenotypes. The association of virulence factors with a specific nuclear subcompartment may also have implications for variation during mitotic recombination in asexual blood stages.


Nature | 2001

Malaria: Cooperative silencing elements in var genes

Kirk W. Deitsch; Michael S. Calderwood; Thomas E. Wellems

Each Plasmodium falciparum malaria parasite carries about 50 var genes from a diverse family that encode variable adhesion proteins on the infected red blood cells of the host, but individual parasites single out just one var gene for expression and silence all the others. Here we show that this silencing is established during the DNA-synthesis phase (S phase) of the cell cycle and that it depends on the cooperative interaction between two elements in separate control regions of each var gene (the 5′-flanking region and the intron). This finding should help to clarify the mechanisms by which parasites coordinate the silencing and activation of var genes that are responsible for antigenic variation in malaria.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Epigenetic memory at malaria virulence genes

Thanat Chookajorn; Ron Dzikowski; Matthias Frank; Felomena Li; Alisha Z. Jiwani; Daniel L. Hartl; Kirk W. Deitsch

During its red blood cell stage, the malaria parasite Plasmodium falciparum can switch its variant surface proteins (P. falciparum erythrocyte membrane protein 1) to evade the host immune response. The var gene family encodes P. falciparum erythrocyte membrane protein 1, different versions of which have unique binding specificities to various human endothelial surface molecules. Individual parasites each contain ≈60 var genes at various locations within their chromosomes; however, parasite isolates contain different complements of var genes, thus, the gene family is enormous with a virtually unlimited number of members. A single var gene is expressed by each parasite in a mutually exclusive manner. We report that control of var gene transcription and antigenic variation is associated with a chromatin memory that includes methylation of histone H3 at lysine K9 as an epigenetic mark. We also discuss how gene transcription memory may affect the mechanism of pathogenesis and immune evasion.


PLOS Pathogens | 2006

Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production

Ron Dzikowski; Matthias Frank; Kirk W. Deitsch

The primary virulence determinant of Plasmodium falciparum malaria parasite–infected cells is a family of heterogeneous surface receptors collectively referred to as PfEMP1. These proteins are encoded by a large, polymorphic gene family called var. The family contains approximately 60 individual genes, which are subject to strict, mutually exclusive expression, with the single expressed var gene determining the antigenic, cytoadherent, and virulence phenotype of the infected cell. The mutually exclusive expression pattern of var genes is imperative for the parasites ability to evade the hosts immune response and is similar to the process of “allelic exclusion” described for mammalian Ig and odorant receptor genes. In mammalian systems, mutually exclusive expression is ensured by negative feedback inhibition mediated by production of a functional protein. To investigate how expression of the var gene family is regulated, we have created transgenic lines of parasites in which expression of individual var loci can be manipulated. Here we show that no such negative feedback system exists in P. falciparum and that this process is dependent solely on the transcriptional regulatory elements immediately adjacent to each gene. Transgenic parasites that are selected to express a var gene in which the PfEMP1 coding region has been replaced by a drug-selectable marker silence all other var genes in the genome, thus effectively knocking out all PfEMP1 expression and indicating that the modified gene is still recognized as a member of the var gene family. Mutually exclusive expression in P. falciparum is therefore regulated exclusively at the level of transcription, and a functional PfEMP1 protein is not necessary for viability or for proper gene regulation in cultured parasites.


Journal of Biological Chemistry | 2003

Plasmodium falciparum var Genes Are Regulated by Two Regions with Separate Promoters, One Upstream of the Coding Region and a Second within the Intron

Michael S. Calderwood; Laila Gannoun-Zaki; Thomas E. Wellems; Kirk W. Deitsch

Antigenic variation in Plasmodium falciparum malaria parasites results from switches in expression among members of the multicopy var gene family. This family is subject to allelic exclusion by which particular genes are expressed while the rest of the family remains transcriptionally silent. Evidence from reporter constructs indicates that var gene silencing involves a cooperative interaction between the var intron and an upstream element and requires transition of the parasites through S-phase of the cell cycle. These findings implicate chromatin assembly in the process of regulating var gene expression and antigenic variation. Here we characterize the var intron and the elements within it that are necessary for var transcriptional silencing. Alignments of var introns show a highly conserved structure that consists of three discreet regions with distinct base pair compositions. The middle region is highly AT-rich and is sufficient to silence an associated var promoter. Constructs that include a typical var intron upstream of a reporter gene or drug-selectable marker reveal that the intron also possesses promoter activity, presumably providing an explanation for the origin of the previously described var “sterile” transcripts. Deletions that disable the promoter activity of the intron also eliminate its ability to function as a silencer. These findings suggest that interactions between the regions of these two promoters and the generation of the sterile transcripts play a significant role in regulating var gene expression.


Molecular and Biochemical Parasitology | 1996

Membrane modifications in erythrocytes parasitized by Plasmodium falciparum.

Kirk W. Deitsch; Thomas E. Wellems

Plasmodium falciparum malaria parasites invade human red blood cells and immediately begin making significant alterations to the structure of the erythrocyte. These alterations facilitate the movement of nutrients into, and waste products and parasite-derived proteins out of the cell to meet the needs of the growing parasite. A tubovesicular membrane network extending from the parasite vacuole membrane probably has a central role in the transport processes. The parasite also modifies the erythrocyte membrane itself in a way that not only changes its permeability but also places parasite-derived proteins in knob-like protrusions at the cell surface. These proteins enable the parasite to adhere to endothelial cells and thereby avoid clearance from the blood stream by the spleen. Antigenic variation of these proteins allows parasitized erythrocytes to vary their phenotype and produce a sustained and chronic malaria infection. Study of the molecular processes that underlie these parasite-induced modifications of the host red blood cell will lead to improved understanding of malaria pathogenesis and, perhaps, suggest new approaches against the disease.


Molecular and Biochemical Parasitology | 1999

Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum.

Kirk W. Deitsch; Amy del Pinal; Thomas E. Wellems

Antigenic variation and immune evasion by Plasmodium falciparum parasitized erythrocytes are mediated by expression switches among members of the multicopy var gene family. Here we describe a cluster of var genes on chromosome 12 that showed spontaneous recombination and switches in the transcription of individual genes. The transcription switches were not associated with sequence changes in promoter regions. Transfected episomes containing a luciferase reporter under control of a var promoter were expressed regardless of the transcriptional status of the endogenous promoter. The results suggest epigenetic regulation of P. falciparum var gene transcription that depends upon the local structure of chromatin and its associated proteins.


EMBO Reports | 2007

Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites.

Ron Dzikowski; Felomena Li; Borko Amulic; Andrew Eisberg; Matthias Frank; Suchit Patel; Thomas E. Wellems; Kirk W. Deitsch

A fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family—a large, hypervariable repertoire of genes that are responsible for the ability of the parasite to evade the host immune system and for pathogenesis of the disease. A central problem in understanding this process concerns the mechanisms that limit expression to a single gene at a time. Here, we describe results that provide information on the mechanisms that control silencing and single gene expression and differentiate between several models that have recently been proposed. The results provide the first evidence, to our knowledge, supporting the existence of a postulated var‐specific, subnuclear expression site and also reinforce the conclusion that var gene regulation is based on cooperative interactions between the two promoters of each var gene.


Journal of Biological Chemistry | 2006

Strict pairing of var promoters and introns is required for var gene silencing in the malaria parasite Plasmodium falciparum

Matthias Frank; Ron Dzikowski; Daniel Costantini; Borko Amulic; Eli Berdougo; Kirk W. Deitsch

The human malaria parasite, Plasmodium falciparum, maintains a persistent infection altering the proteins expressed on the surface of the infected red blood cells, thus avoiding the host immune response. The primary surface antigen, a protein called PfEMP1, is encoded by a multicopy gene family called var. Each individual parasite only expresses a single var gene at a time, maintaining all other members of the family in a transcriptionally silent state. Previous work using reporter genes in transiently transfected plasmid constructs implicated a conserved intron found in all var genes in the silencing process. Here we have utilized episomal recombination within stably transformed parasites to generate different var promoter and intron arrangements and show that loss of the intron results in var promoter activation. Further, in multicopy plasmid concatamers, each intron could only silence a single promoter, suggesting a one-to-one pairing requirement for silencing. Transcriptionally active, “unpaired” promoters remained active after integration into a chromosome; however, they were not recognized by the pathway that maintains mutually exclusive var gene expression. The data indicate that intron/promoter pairing is responsible for silencing each individual var gene and that disruption of silencing of one gene does not affect the transcriptional activity of neighboring var promoters. This suggests that silencing is regulated at the level of individual genes rather than by assembly of silent chromatin throughout a chromosomal region, thus providing a possible explanation of how a var gene can be maintained in a silent state while the immediately adjacent var gene is transcriptionally active.

Collaboration


Dive into the Kirk W. Deitsch's collaboration.

Top Co-Authors

Avatar

Ron Dzikowski

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Wellems

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthias Frank

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Templeton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Llinás

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge