Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirsten Harvey is active.

Publication


Featured researches published by Kirsten Harvey.


Science | 2004

GlyR α3: An Essential Target for Spinal PGE2-Mediated Inflammatory Pain Sensitization

Robert J. Harvey; Ulrike B. Depner; Heinz Wässle; Seifollah Ahmadi; Cornelia Heindl; Heiko Reinold; Trevor G. Smart; Kirsten Harvey; Burkhard Schütz; Osama M. Abo-Salem; Andreas Zimmer; Pierrick Poisbeau; Hans Welzl; David P. Wolfer; Heinrich Betz; Hanns Ulrich Zeilhofer; Ulrike Müller

Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR α3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR α3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR α3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR α3 may provide a previously unrecognized molecular target in pain therapy.


Nature Cell Biology | 2007

The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1

Helene Plun-Favreau; Kristina Klupsch; Nicoleta Moisoi; Sonia Gandhi; Svend Kjær; David Frith; Kirsten Harvey; Emma Deas; Robert J. Harvey; Neil Q. McDonald; Nicholas W. Wood; L. Miguel Martins; Julian Downward

In mice, targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinsons disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinsons disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinsons disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinsons disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.


Neuron | 2009

Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin

Alexandros Poulopoulos; Gayane Aramuni; Guido Meyer; Tolga Soykan; Mrinalini Hoon; Theofilos Papadopoulos; Mingyue Zhang; Ingo Paarmann; Celine Fuchs; Kirsten Harvey; Peter Jedlicka; Stephan W. Schwarzacher; Heinrich Betz; Robert J. Harvey; Nils Brose; Weiqi Zhang; Frederique Varoqueaux

In the mammalian CNS, each neuron typically receives thousands of synaptic inputs from diverse classes of neurons. Synaptic transmission to the postsynaptic neuron relies on localized and transmitter-specific differentiation of the plasma membrane with postsynaptic receptor, scaffolding, and adhesion proteins accumulating in precise apposition to presynaptic sites of transmitter release. We identified protein interactions of the synaptic adhesion molecule neuroligin 2 that drive postsynaptic differentiation at inhibitory synapses. Neuroligin 2 binds the scaffolding protein gephyrin through a conserved cytoplasmic motif and functions as a specific activator of collybistin, thus guiding membrane tethering of the inhibitory postsynaptic scaffold. Complexes of neuroligin 2, gephyrin and collybistin are sufficient for cell-autonomous clustering of inhibitory neurotransmitter receptors. Deletion of neuroligin 2 in mice perturbs GABAergic and glycinergic synaptic transmission and leads to a loss of postsynaptic specializations specifically at perisomatic inhibitory synapses.


Nature Genetics | 2008

Highly effective SNP-based association mapping and management of recessive defects in livestock

Carole Charlier; Wouter Coppieters; Frédéric Rollin; Daniel Desmecht; Jørgen S. Agerholm; Nadine Cambisano; Eloisa Carta; Sabrina Dardano; Marc Dive; Jean-Claude Frennet; R Hanset; Xavier Hubin; Claus B. Jørgensen; Latifa Karim; Matthew Kent; Kirsten Harvey; Brian R. Pearce; Patricia Simon; Nico Tama; Haisheng Nie; Sébastien Vandeputte; Sigbjørn Lien; Maria Longeri; Merete Fredholm; Robert J. Harvey; Michel Georges

The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.


The Journal of Neuroscience | 2004

The GDP-GTP Exchange Factor Collybistin: An Essential Determinant of Neuronal Gephyrin Clustering

Kirsten Harvey; Ian Duguid; Melissa J. Alldred; Sarah E. Beatty; Hamish Ward; Nicholas H. Keep; Sue E. Lingenfelter; Brian R. Pearce; Johan Lundgren; Michael John Owen; Trevor G. Smart; Bernhard Lüscher; Mark I. Rees; Robert J. Harvey

Glycine receptors (GlyRs) and specific subtypes of GABAA receptors are clustered at synapses by the multidomain protein gephyrin, which in turn is translocated to the cell membrane by the GDP-GTP exchange factor collybistin. We report the characterization of several new variants of collybistin, which are created by alternative splicing of exons encoding an N-terminal src homology 3 (SH3) domain and three alternate C termini (CB1, CB2, and CB3). The presence of the SH3 domain negatively regulates the ability of collybistin to translocate gephyrin to submembrane microaggregates in transfected mammalian cells. Because the majority of native collybistin isoforms appear to harbor the SH3 domain, this suggests that collybistin activity may be regulated by protein-protein interactions at the SH3 domain. We localized the binding sites for collybistin and the GlyR β subunit to the C-terminal MoeA homology domain of gephyrin and show that multimerization of this domain is required for collybistin-gephyrin and GlyR-gephyrin interactions. We also demonstrate that gephyrin clustering in recombinant systems and cultured neurons requires both collybistin-gephyrin interactions and an intact collybistin pleckstrin homology domain. The vital importance of collybistin for inhibitory synaptogenesis is underlined by the discovery of a mutation (G55A) in exon 2 of the human collybistin gene (ARHGEF9) in a patient with clinical symptoms of both hyperekplexia and epilepsy. The clinical manifestation of this collybistin missense mutation may result, at least in part, from mislocalization of gephyrin and a major GABAA receptor subtype.


Nature Genetics | 2006

Mutations in the gene encoding GlyT2 ( SLC6A5 ) define a presynaptic component of human startle disease

Mark I. Rees; Kirsten Harvey; Brian R. Pearce; Seo-Kyung Chung; Ian Duguid; Philip Thomas; Sarah E. Beatty; Gail E. Graham; Linlea Armstrong; Rita Shiang; Kim J. Abbott; Sameer M. Zuberi; John B.P. Stephenson; Michael John Owen; Marina A. J. Tijssen; Arn M. J. M. van den Maagdenberg; Trevor G. Smart; Stéphane Supplisson; Robert J. Harvey

Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.


Annals of Neurology | 2006

A heterozygous effect for PINK1 mutations in Parkinson's disease?

Patrick M. Abou-Sleiman; Miratul M. K. Muqit; Neil Q. McDonald; Yan Xiang Yang; Sonia Gandhi; Daniel G. Healy; Kirsten Harvey; Robert J. Harvey; Emma Deas; Kailash P. Bhatia; Niall Quinn; Andrew J. Lees; David S. Latchman; Nicholas W. Wood

To investigate the significance of PINK1 mutations in sporadic Parkinsons disease (PD).


Trends in Genetics | 2008

The genetics of hyperekplexia: more than startle!

Robert J. Harvey; Maya Topf; Kirsten Harvey; Mark I. Rees

Hyperekplexia is characterised by neonatal hypertonia and an exaggerated startle reflex in response to acoustic or tactile stimuli. Genetic analysis of this disorder has revealed mutations in genes for several postsynaptic proteins involved in glycinergic neurotransmission, including the glycine receptor (GlyR) alpha1 and beta subunits, gephyrin and collybistin. However, new research suggests that mutations in the gene encoding the presynaptic glycine transporter GlyT2 are a second major cause of human hyperekplexia, as well as congenital muscular dystonia type 2 (CMD2) in cattle. These findings raise the intriguing possibility that both presynaptic and postsynaptic causes of disease might also exist in related disorders, such as idiopathic generalised epilepsies, where mutations in inhibitory GABA(A) receptor subunit genes have already been identified.


Journal of Neurochemistry | 2006

Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress

Miratul M. K. Muqit; Patrick M. Abou-Sleiman; Adrian T. Saurin; Kirsten Harvey; S Gandhi; Emma Deas; Simon Eaton; Martin Smith; Kerrie Venner; Antoni Matilla; Daniel G. Healy; William P. Gilks; Andrew J. Lees; Janice L. Holton; Tamas Revesz; Peter J. Parker; Robert J. Harvey; Nicholas W. Wood; David S. Latchman

Following our identification of PTEN‐induced putative kinase 1 (PINK1) gene mutations in PARK6‐linked Parkinsons disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG‐132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.


The EMBO Journal | 2007

Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice

Theofilos Papadopoulos; Martin Korte; Volker Eulenburg; Hisahiko Kubota; Marina Retiounskaia; Robert J. Harvey; Kirsten Harvey; Gregory A. O'Sullivan; Bodo Laube; Swen Hülsmann; Jörg R. P. Geiger; Heinrich Betz

Collybistin (Cb) is a brain‐specific guanine nucleotide exchange factor that has been implicated in plasma membrane targeting of the postsynaptic scaffolding protein gephyrin found at glycinergic and GABAergic synapses. Here we show that Cb‐deficient mice display a region‐specific loss of postsynaptic gephyrin and GABAA receptor clusters in the hippocampus and the basolateral amygdala. Cb deficiency is accompanied by significant changes in hippocampal synaptic plasticity, due to reduced dendritic GABAergic inhibition. Long‐term potentiation is enhanced, and long‐term depression reduced, in Cb‐deficient hippocampal slices. Consistent with the anatomical and electrophysiological findings, the animals show increased levels of anxiety and impaired spatial learning. Together, our data indicate that Cb is essential for gephyrin‐dependent clustering of a specific set of GABAA receptors, but not required for glycine receptor postsynaptic localization.

Collaboration


Dive into the Kirsten Harvey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Brian R. Pearce

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Emma Deas

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge