Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kirsten Spann is active.

Publication


Featured researches published by Kirsten Spann.


Journal of Virology | 2005

Effects of Nonstructural Proteins NS1 and NS2 of Human Respiratory Syncytial Virus on Interferon Regulatory Factor 3, NF-κB, and Proinflammatory Cytokines

Kirsten Spann; Kim C. Tran; Peter L. Collins

ABSTRACT Human respiratory syncytial virus (HRSV) is the leading cause of serious pediatric acute respiratory tract infections, and a better understanding is needed of the host response to HRSV and its attenuated vaccine derivatives. It has been shown previously that HRSV nonstructural proteins 1 and 2 (NS1 and NS2) inhibit the induction of alpha/beta interferon (IFN-α/β) in A549 cells and human macrophages. Two principal transcription factors for the early IFN-β and -α1 response are interferon regulatory factor 3 (IRF-3) and nuclear factor κB (NF-κB). At early times postinfection, wild-type HRSV and the NS1/NS2 deletion mutants were very similar in the ability to activate IRF-3. However, once NS1 and NS2 were expressed significantly, they acted cooperatively to suppress activation and nuclear translocation of IRF-3. Since these viruses differed greatly in the induction of IFN-α/β, NF-κB activation was evaluated in Vero cells, which lack the structural genes for IFN-α/β and would preclude confounding effects of IFN-α/β. This showed that deletion of the NS2 gene sharply reduced the ability of HRSV to induce activation of NF-κB. Since recombinant HRSVs from which the NS1 or NS2 genes have been deleted are being developed as vaccine candidates, we investigated whether the changes in activation of host transcription factors and increased IFN-α/β production had an effect on the epithelial production of proinflammatory factors. Viruses lacking NS1 and/or NS2 stimulated modestly lower production of RANTES (Regulated on Activation Normal T-cell Expressed and Secreted), interleukin 8, and tumor necrosis factor alpha compared to wild-type recombinant RSV, supporting their use as attenuated vaccine candidates.


Journal of Virology | 2006

Alpha and Lambda Interferon Together Mediate Suppression of CD4 T Cells Induced by Respiratory Syncytial Virus

Bo Chi; Harold Dickensheets; Kirsten Spann; Marc A. Alston; Cindy Luongo; Laure Dumoutier; Jiaying Huang; Jean-Christophe Renauld; Sergei V. Kotenko; Mario Roederer; Judy A. Beeler; Raymond P. Donnelly; Peter L. Collins; Ronald L. Rabin

ABSTRACT The mechanism by which respiratory syncytial virus (RSV) suppresses T-cell proliferation to itself and other antigens is poorly understood. We used monocyte-derived dendritic cells (MDDC) and CD4 T cells and measured [3H]thymidine incorporation to determine the factors responsible for RSV-induced T-cell suppression. These two cell types were sufficient for RSV-induced suppression of T-cell proliferation in response to cytomegalovirus or Staphylococcus enterotoxin B. Suppressive activity was transferable with supernatants from RSV-infected MDDC and was not due to transfer of live virus or RSV F (fusion) protein. Supernatants from RSV-infected MDDC, but not MDDC exposed to UV-killed RSV or mock conditions, contained alpha interferon (IFN-α; median, 43 pg/ml) and IFN-λ (approximately 1 to 20 ng/ml). Neutralization of IFN-α with monoclonal antibody (MAb) against one of its receptor chains, IFNAR2, or of IFN-λ with MAb against either of its receptor chains, IFN-λR1 (interleukin 28R [IL-28R]) or IL-10R2, had a modest effect. In contrast, blocking the two receptors together markedly reduced or completely blocked the RSV-induced suppression of CD4 T-cell proliferation. Defining the mechanism of RSV-induced suppression may guide vaccine design and provide insight into previously uncharacterized human T-cell responses and activities of interferons.


Journal of Virology | 2003

Genetic Recombination during Coinfection of Two Mutants of Human Respiratory Syncytial Virus

Kirsten Spann; Peter L. Collins; Michael N. Teng

ABSTRACT Recombination between coinfecting viruses had not been documented previously for a nonsegmented negative-strand RNA virus (mononegavirus). We investigated the potential of intermolecular recombination by respiratory syncytial virus (RSV) by coinfecting HEp-2 cells with two recombinant RSV (rRSV) mutants lacking either the G gene (ΔG/HEK) or the NS1 and NS2 genes (ΔNS1/2). These viruses replicate inefficiently and form pinpoint plaques in HEp-2 cells. Therefore, potential recombined viruses with a growth and/or plaque formation advantage should easily be identified and differentiated from the two parental viruses. Further identification of potential recombinants was aided by the inclusion of point mutation markers in the F and L genes of ΔG/HEK and the design of reverse transcription-PCR (RT-PCR) primers capable of detecting these markers. Independent coinfections and control single infections by these two rRSV mutants were performed. In one of six coinfections, an RSV variant was identified that produced plaques slightly larger than those of wild-type RSV in HEp-2 cells. RT-PCR and sequencing provided evidence that this variant was a recombined RSV (rec-RSV). The rec-RSV appeared to have been generated by a polymerase jump from the ΔG/HEK genome to that of ΔNS1/2 and back again in the vicinity of the SH-G-F genes. This apparently involved nonhomologous and homologous recombination events, respectively. The recombined genome was identical to that of the ΔG/HEK mutant except that all but the first 12 nucleotides of the SH gene were deleted and replaced by an insert consisting of the last 91 nucleotides of the G gene and its downstream intergenic region. This insert could have come only from the coinfecting ΔNS1/2 virus. This resulted in the formation of a short chimeric SH:G gene. Northern and Western blot analysis confirmed that the rec-RSV did not express the normal SH and G mRNAs and proteins but did express the aberrant SH:G mRNA. This provides an experimental demonstration of intermolecular recombination yielding a viable, helper-independent mononegavirus. However, the isolation of only a single rec-RSV under these optimized conditions supports the idea that RSV recombination is rare indeed.


Lancet Infectious Diseases | 2012

Hendra virus: an emerging paramyxovirus in Australia

Suresh Mahalingam; Lara J. Herrero; E. Geoffrey Playford; Kirsten Spann; Belinda L. Herring; Michael S. Rolph; Deborah Middleton; Bradley J McCall; Hume E. Field; Lin-Fa Wang

Hendra virus, first identified in 1994 in Queensland, is an emerging zoonotic pathogen gaining importance in Australia because a growing number of infections are reported in horses and people. The virus, a member of the family Paramyxoviridae (genus Henipavirus), is transmitted to horses by pteropid bats (fruit bats or flying foxes), with human infection a result of direct contact with infected horses. Case-fatality rate is high in both horses and people, and so far, more than 60 horses and four people have died from Hendra virus infection in Australia. Human infection is characterised by an acute encephalitic syndrome or relapsing encephalitis, for which no effective treatment is currently available. Recent identification of Hendra virus infection in a domestic animal outside the laboratory setting, and the large range of pteropid bats in Australia, underpins the potential of this virus to cause greater morbidity and mortality in both rural and urban populations and its importance to both veterinary and human health. Attempts at treatment with ribavirin and chloroquine have been unsuccessful. Education, hygiene, and infection control measures have hitherto been the mainstay of prevention, while access to monoclonal antibody treatment and development of an animal vaccine offer further opportunities for disease prevention and control.


Journal of Immunology | 2011

Plasmacytoid Dendritic Cells Promote Host Defense against Acute Pneumovirus Infection via the TLR7–MyD88-Dependent Signaling Pathway

Sophia Davidson; Gerard E. Kaiko; Zhixuan Loh; Amit Lalwani; Vivian Zhang; Kirsten Spann; Shen Yun Foo; Nicole G. Hansbro; Satoshi Uematsu; Shizuo Akira; Klaus I. Matthaei; Helene F. Rosenberg; Paul S. Foster; Simon Phipps

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8+ T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet–unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.


The Journal of Allergy and Clinical Immunology | 2013

Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice

Gerard E. Kaiko; Zhixuan Loh; Kirsten Spann; Jason P. Lynch; Amit Lalwani; Zhenglong Zheng; Sophia Davidson; Satoshi Uematsu; Shizuo Akira; John D. Hayball; Kerrilyn R. Diener; Katherine J. Baines; Jodie L. Simpson; Paul S. Foster; Simon Phipps

BACKGROUND Respiratory tract viruses are a major environmental risk factor for both the inception and exacerbations of asthma. Genetic defects in Toll-like receptor (TLR) 7-mediated signaling, impaired type I interferon responses, or both have been reported in asthmatic patients, although their contribution to the onset and exacerbation of asthma remains poorly understood. OBJECTIVE We sought to determine whether Pneumovirus infection in the absence of TLR7 predisposes to bronchiolitis and the inception of asthma. METHODS Wild-type and TLR7-deficient (TLR7(-/-)) mice were inoculated with the rodent-specific pathogen pneumonia virus of mice at 1 (primary), 7 (secondary), and 13 (tertiary) weeks of age, and pathologic features of bronchiolitis or asthma were assessed. In some experiments infected mice were exposed to low-dose cockroach antigen. RESULTS TLR7 deficiency increased viral load in the airway epithelium, which became sloughed and necrotic, and promoted an IFN-α/β(low), IL-12p70(low), IL-1β(high), IL-25(high), and IL-33(high) cytokine microenvironment that was associated with the recruitment of type 2 innate lymphoid cells/nuocytes and increased TH2-type cytokine production. Viral challenge of TLR7(-/-) mice induced all of the cardinal pathophysiologic features of asthma, including tissue eosinophilia, mast cell hyperplasia, IgE production, airway smooth muscle alterations, and airways hyperreactivity in a memory CD4(+) T cell-dependent manner. Importantly, infections with pneumonia virus of mice promoted allergic sensitization to inhaled cockroach antigen in the absence but not the presence of TLR7. CONCLUSION TLR7 gene defects and Pneumovirus infection interact to establish an aberrant adaptive response that might underlie virus-induced asthma exacerbations in later life.


Thorax | 2014

Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy

Kirsten Spann; Engin Baturcam; Johanna Schagen; Carmen M. Jones; Claire P Straub; F Maxine Preston; Linping Chen; Simon Phipps; Peter D. Sly; Emmanuelle Fantino

Background Airway epithelial cells (AEC) from patients with asthma, appear to have an impaired interferon (IFN)-β and -λ response to infection with rhinovirus. Objectives To determine if impaired IFN responses can be identified in young children at risk of developing asthma due to atopy and/or early life wheeze, and if the site of infection or the infecting virus influence the antiviral response. Methods Nasal (N) and tracheal (T) epithelial cells (EC) were collected from children categorised with atopy and/or wheeze based on specific IgE to locally common aeroallergens and a questionnaire concerning respiratory health. Submerged primary cultures were infected with respiratory syncytial virus (RSV) or human metapneumovirus (hMPV), and IFN production, inflammatory cytokine expression and viral replication quantified. Results Nasal epithelial cells (NEC), but not tracheal epithelial cells (TEC), from children with wheeze and/or atopy produced less IFN-β, but not IFN-λ, in response to RSV infection; this was associated with higher viral shedding. However, IFN-regulated factors IRF-7, Mx-1 and CXCL-10, and inflammatory cytokines were not differentially regulated. NECs and TECs from children with wheeze and/or atopy demonstrated no impairment of the IFN response (β or λ) to hMPV infection. Despite this, more hMPV was shed from these cells. Conclusions AECs from children with wheeze and/or atopy do not have an intrinsic defect in the production of IFN-β or -λ, however, this response is influenced by the infecting virus. Higher viral load is associated with atopy and wheeze suggesting an impaired antiviral response to RSV and hMPV that is not influenced by production of IFNs.


Molecular & Cellular Proteomics | 2012

The Human Respiratory Syncytial Virus Nonstructural Protein 1 Regulates Type I and Type II Interferon Pathways

Marcus L. Hastie; Madeleine J. Headlam; Nirav B. Patel; Alexander Bukreyev; Ursula J. Buchholz; Keyur A. Dave; Emma L. Norris; Cassandra L. Wright; Kirsten Spann; Peter L. Collins; Jeffrey J. Gorman

Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets.


World Journal of Microbiology & Biotechnology | 1997

Viral diseases of penaeid shrimp with particular reference to four viruses recently found in shrimp from Queensland

Kirsten Spann; R. J. G. Lester

The culture of penaeid shrimp world-wide is primarily dependent on wild-caught broodstock which has an enormous potential to introduce new pathogens, particularly viruses, into culture systems. Of the 13 viruses described for cultured penaeid shrimp, seven have been described within the past 5 years; the most devastating viral epidemics on record for cultured penaeid shrimp have also occurred within the past 5years. During examination of local wild and cultured shrimp, four new viruses were found. Bennettae baculovirus was discovered in the digestive gland of wild Metapenaeus bennettae. It closely resembles monodon baculovirus (MBV) but has a more slender virion, does not cross-react with a DNA probe for MBV and is not infectious to Penaeus monodon. Two morphologically indistinguishable viruses, one pathogenic (gill-associated virus, GAV) and the other benign (lymphoid organ virus, LOV), were found in cultured P. monodon. LOV and GAV closely resemble yellow head virus (YHV) of Thailand. A parvo-like virus was found recently in dying post-larvae of P. japonicus. As the intensity of shrimp culture world-wide increases, researchers can expect to discover more penaeid viruses. The need to close the life cycle of P. monodon and other cultured species and develop rapid diagnostic methods for viral infections has become imperative.


Journal of Virology | 2004

The Gene Encoding the Nucleocapsid Protein of Gill-Associated Nidovirus of Penaeus monodon Prawns Is Located Upstream of the Glycoprotein Gene

Jeff A. Cowley; Lee C. Cadogan; Kirsten Spann; Nusra Sittidilokratna; Peter J. Walker

ABSTRACT The ORF2 gene of Gill-associated virus (GAV) of Penaeus monodon prawns resides 93 nucleotides downstream of the ORF1a-ORF1b gene and encodes a 144-amino-acid hydrophilic polypeptide (15,998 Da; pI, 9.75) containing 20 basic (14%) and 13 acidic (9%) residues and 19 prolines (13%). Antiserum to a synthetic ORF2 peptide or an Escherichia coli-expressed glutathione S-transferase-ORF2 fusion protein detected a 20-kDa protein in infected lymphoid organ and gill tissues in Western blots. The GAV ORF2 fusion protein antiserum also cross-reacted with the p20 nucleoprotein in virions of the closely related Yellow head virus. By immuno-gold electron microscopy, it was observed that the ORF2 peptide antibody localized to tubular GAV nucleocapsids, often at the ends or at lateral cross sections. As GAV appears to contain only two structural protein genes (ORF2 and ORF3), these data indicate that GAV differs from vertebrate nidoviruses in that the gene encoding the nucleocapsid protein is located upstream of the gene encoding the virion glycoproteins.

Collaboration


Dive into the Kirsten Spann's collaboration.

Top Co-Authors

Avatar

Simon Phipps

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason P. Lynch

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

John W. Upham

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Zhixuan Loh

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Vivian Zhang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jeff A. Cowley

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter D. Sly

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Peter J. Walker

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Engin Baturcam

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge