Kirsten Tjørnehøj
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirsten Tjørnehøj.
Veterinary Immunology and Immunopathology | 2000
Peter M. H. Heegaard; Dale L. Godson; Mathilda J. M. Toussaint; Kirsten Tjørnehøj; Lars Erik Larsen; Birgitte Viuff; L. Rønsholt
Abstract The ability of a pure virus infection to induce an acute phase protein response is of interest as viral infections are normally considered to be less efficient in inducing an acute phase protein response than bacterial infections. This was studied in a bovine model for infection with bovine respiratory syncytial virus (BRSV), analysing the induction of the two most dominant bovine acute phase proteins haptoglobin and serum amyloid A (SAA). Strong and reproducible acute phase responses were detected for both proteins, peaking at around 7–8 days after inoculation of BRSV, while no response was seen in mock-inoculated control animals. The serum concentrations reached for SAA and haptoglobin during the BRSV-induced acute phase response were generally the same or higher than previously reported for bacterial infections in calves. The magnitude and the duration of the haptoglobin response was found to correlate well with the severity of clinical signs (fever) and with the extent of lung consolidation while SAA responded most rapidly to infection.
American Journal of Pathology | 2002
Birgitte Viuff; Kirsten Tjørnehøj; Lars Erik Larsen; Christine M. Røntved; Åse Uttenthal; L. Rønsholt; Soren Alexandersen
Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus and the infections with human respiratory syncytial virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared by neutrophils whereas apoptosis was an important way of clearance of BRSV-infected epithelial cells. Neighboring cells, which probably were epithelial cells, phagocytized the BRSV-infected apoptotic cells. The number of both CD4+ and CD8+ T cells increased during the course of infection, but the T cells were not found between the epithelial cells of the bronchi up until apoptosis was no longer detected, thus in the bronchi there was no indication of direct contact-dependent T-cell-mediated cytotoxicity in the primary infection.
Infection and Immunity | 2004
Matilde Piñeiro; M. Andrés; M. Iturralde; S. Carmona; J. Hirvonen; S. Pyörälä; Peter M. H. Heegaard; Kirsten Tjørnehøj; Fermín Lampreave; A. Piñeiro; María A. Alava
ABSTRACT We have isolated from calf serum a protein with an apparent Mr of 120,000. The protein was detected by using antibodies against major acute-phase protein in pigs with acute inflammation. The amino acid sequence of an internal fragment revealed that this protein is the bovine counterpart of ITIH4, the heavy chain 4 of the inter-alpha-trypsin inhibitor family. The response of this protein in the sera was determined for animals during experimental bacterial and viral infections. In the bacterial model, animals were inoculated with a mixture of Actinomyces pyogenes, Fusobacterium necrophorum, and Peptostreptococcus indolicus to induce an acute-phase reaction. All animals developed moderate to severe clinical mastitis and exhibited remarkable increases in ITIH4 concentration in serum (from 3 to 12 times the initial values, peaking at 48 to 72 h after infection) that correlated with the severity of the disease. Animals with experimental infections with bovine respiratory syncytial virus (BRSV) also showed increases in ITIH4 concentration (from two- to fivefold), which peaked at around 7 to 8 days after inoculation. Generally, no response was seen after a second infection of the same animals with the virus. Because of the significant induction of the protein in the animals in the mastitis and BRSV infection models, we can conclude that ITIH4 is a new positive acute-phase protein in cattle.
Veterinary Microbiology | 2000
Åse Uttenthal; Lars Erik Larsen; Jens Stege Philipsen; Kirsten Tjørnehøj; Birgitte Viuff; Knud Herby Nielsen; Thomas Krogh Nielsen
Abstract Using specific ELISAs, antibody levels of four different isotypes to bovine respiratory syncytial virus (BRSV) were determined in calves, following experimental BRSV infection. Most calves experienced an increase in the specific IgM and IgG1 titres about 6–10 days after infection with BRSV. The IgM titre was transient showing positive titres for only 5–10 days, while specific IgG1 was present for a longer time. IgA was detected concomitantly with IgM but at a lower level. Production of IgG2 anti-BRSV antibodies was detected from 3 weeks after infection. In two closed herds, repeated blood samplings were performed on young stock to analyse maternal immunity. The passively transferred antibodies were mainly of the IgG1 isotype and the half-life of IgG1 to BRSV was estimated to be 26.6 days. One of the herds had an outbreak of enzootic pneumonia, diagnosed to be caused by BRSV. Furthermore, another herd with acute BRSV was followed by weekly blood samples in six calves; in both herds IgM and IgG1 was detected shortly after the appearance of clinical signs. Serum samples from 50 Danish dairy herds (453 samples) were tested for immunoglobulins of the isotypes IgG1, IgG2 and IgM. The presence of antibodies to BRSV was widespread and more than 54% of the samples had BRSV antibodies of both the IgG1 and IgG2 isotypes indicating a high herd prevalence to BRSV. Test samples from two herds out of 50 were free from all isotypes to BRSV.
Transboundary and Emerging Diseases | 2009
S. N. Balinda; Kirsten Tjørnehøj; Vincent B. Muwanika; A. K. Sangula; Frank Norbert Mwiine; Chrisostom Ayebazibwe; Charles Masembe; Hans R. Siegismund; Soren Alexandersen
Foot-and-mouth disease (FMD) is endemic in Uganda with control strategies focusing on vaccination of cattle, while small ruminants are largely ignored. In order for Uganda to establish effective control strategies, it is crucial that the epidemiology of the disease is fully understood. This study summarizes results of serological investigations of sheep and goats for antibodies to FMDV from four districts in 2006 following an FMD outbreak in the region and from an attempted comprehensive random sampling in two districts in 2007. Antibodies were quantified and serotyped using competitive ELISA for antibodies towards non-structural proteins (NSP) and structural proteins towards serotype O, and blocking ELISA for antibodies towards the seven serotypes of FMD virus (FMDV). In 2006, sheep and goats in Bushenyi and Isingiro districts were free from antibodies towards FMDV, while herds in Kasese and Mbarara districts excluding Kahendero village were all positive for antibodies towards NSP and SP-O. In 2007, mean prevalence estimates of antibodies towards FMDV NSP was 14% in goats and 22% in sheep in Kasese district, while Bushenyi was still free. The difference between these two districts probably reflects different levels of FMDV challenge attributed to the variation in exposure rates which again in part may be as a result of the differing husbandry practices. Contrary to 2006, with clear antibodies towards serotype O, the serotype-specificity of the antibodies was less clear in 2007, as antibodies towards both serotype O and SAT serotypes were identified. Our results show that goats and sheep are infected during FMD outbreaks, and that they may be useful for determining the serotype of FMD outbreaks in Uganda, if they are sampled shortly after an outbreak.
Research in Veterinary Science | 2003
Kirsten Tjørnehøj; Åse Uttenthal; Birgitte Viuff; Lars Erik Larsen; C. Røntved; L. Rønsholt
Abstract Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible experimental infection model for BRSV in 2–5-month-old, conventionally reared Jersey calves. Thirty-four colostrum-fed calves were inoculated once by aerosol and intratracheal injection with BRSV. Respiratory disease was recorded in 91% of the BRSV-inoculated calves, 72% had an accompanying rise in rectal temperature and 83% exhibited >5% consolidation of the lung tissue. The disease closely resembled natural outbreaks of BRSV-related pneumonia, and detection of BRSV in nasal secretions and lung tissues confirmed the primary role of BRSV. Nine mock-inoculated control calves failed to develop respiratory disease. This model is a valuable tool for the study of the pathogenesis of BRSV and for vaccine efficacy studies.
Journal of Veterinary Diagnostic Investigation | 1999
Lars Erik Larsen; Kirsten Tjørnehøj; B. Viuff; N. E. Jensen; Åse Uttenthal
A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for detection of bovine respiratory syncytial virus (BRSV) in lung tissue of naturally and experimentally infected cattle. Primers were selected from the gene coding the F fusion protein, which is relatively conserved among BRSV isolates. The RT-PCR assay was highly specific, it yielded positive reactions only when performed on BRSV-infected cell cultures or tissues. The detection limit of the RT-PCR assay was assessed as 5 TCID50. BRSV was detected in tissues of the respiratory tract and in the tracheobroncheal lymph node of calves euthanized 2–8 days after experimental infection with BRSV, whereas samples of other tissues and samples from mock-infected animals were negative at all time points. Examination of lung samples from 8 different regions of the lungs revealed that although the virus was most often found in the cranioventral lobules, it was frequently present in all lung lobules. Microbiologic examinations of all acute fatal cases of pneumonia (135 animals) in cattle submitted for diagnostic purposes during 1 year revealed that Actinomyces pyogenes (11%),Haemophilus somnus (10%), Pasteurella sp. (7%), and Pasteurella haemolytica (7%) were the most common bacterial agents found in the lungs. BRSV was identified using a conventional antigen enzyme-linked immunosorbent assay (ELISA) in 23 (17%) animals. The established BRSV-specific RT-PCR assay yielded positive results for the same 23 animals. In addition, 10 animals that were negative with the ELISA were positive with the RT-PCR assay. These results indicates that the RT-PCR assay can be a sensitive, reliable alternative to conventional diagnostic procedures.
BMC Veterinary Research | 2010
Chrisostom Ayebazibwe; Frank Norbert Mwiine; Kirsten Tjørnehøj; S. N. Balinda; Vincent B. Muwanika; Anna Rose Ademun Okurut; Graham J. Belsham; Preben Normann; Hans R. Siegismund; Soren Alexandersen
BackgroundTo study the role of African buffalos (Syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda, serum samples were collected from 207 African buffalos, 21 impalas (Aepyceros melampus), 1 giraffe (Giraffa camelopardalis), 1 common eland (Taurotragus oryx), 7 hartebeests (Alcelaphus buselaphus) and 5 waterbucks (Kobus ellipsiprymnus) from four major National Parks in Uganda between 2005 and 2008. Serum samples were screened to detect antibodies against foot-and-mouth disease virus (FMDV) non-structural proteins (NSP) using the Ceditest® FMDV NS ELISA. Solid Phase Blocking ELISAs (SPBE) were used to determine the serotype-specificity of antibodies against the seven serotypes of FMDV among the positive samples. Virus isolation and sequencing were undertaken to identify circulating viruses and determine relatedness between them.ResultsAmong the buffalo samples tested, 85% (95% CI = 80-90%) were positive for antibodies against FMDV non-structural proteins while one hartebeest sample out of seven (14.3%; 95% CI = -11.6-40.2%) was the only positive from 35 other wildlife samples from a variety of different species. In the buffalo, high serotype-specific antibody titres (≥ 80) were found against serotypes O (7/27 samples), SAT 1 (23/29 samples), SAT 2 (18/32 samples) and SAT 3 (16/30 samples). Among the samples titrated for antibodies against the four serotypes O, SAT 1, SAT 2 and SAT 3, 17/22 (77%; CI = 59.4-94.6%) had high titres against at least two serotypes.FMDV isolates of serotypes SAT 1 (1 sample) and SAT 2 (2 samples) were obtained from buffalo probang samples collected in Queen Elizabeth National Park (QENP) in 2007. Sequence analysis and comparison of VP1 coding sequences showed that the SAT 1 isolate belonged to topotype IV while the SAT 2 isolates belonged to different lineages within the East African topotype X.ConclusionsConsistent detection of high antibody titres in buffalos supports the view that African buffalos play an important role in the maintenance of FMDV infection within National Parks in Uganda. Both SAT 1 and SAT 2 viruses were isolated, and serological data indicate that it is also likely that FMDV serotypes O and SAT 3 may be present in the buffalo population. Detailed studies should be undertaken to define further the role of wildlife in the epidemiology of FMDV in East Africa.
PLOS ONE | 2011
Graham J. Belsham; Syed Muhammad Jamal; Kirsten Tjørnehøj; Anette Bøtner
Background Foot and mouth disease is an economically important disease of cloven-hoofed animals including cattle, sheep and pigs. It is caused by a picornavirus, foot-and-mouth disease virus (FMDV), which has a positive sense RNA genome which, when introduced into cells, can initiate virus replication. Principal Findings A system has been developed to rescue infectious FMDV from RNA preparations generated from clinical samples obtained under experimental conditions and then applied to samples collected in the “field”. Clinical samples from suspect cases of foot-and-mouth disease (FMD) were obtained from within Pakistan and Afghanistan. The samples were treated to preserve the RNA and then transported to National Veterinary Institute, Lindholm, Denmark. Following RNA extraction, FMDV RNA was quantified by real-time RT-PCR and samples containing significant levels of FMDV RNA were introduced into susceptible cells using electroporation. Progeny viruses were amplified in primary bovine thyroid cells and characterized using antigen ELISA and also by RT-PCR plus sequencing. FMD viruses of three different serotypes and multiple lineages have been successfully rescued from the RNA samples. Two of the rescued viruses (of serotype O and Asia 1) were inoculated into bull calves under high containment conditions. Acute clinical disease was observed in each case which spread rapidly from the inoculated calves to in-contact animals. Thus the rescued viruses were highly pathogenic. The availability of the rescued viruses enabled serotyping by antigen ELISA and facilitated genome sequencing. Conclusions The procedure described here should improve the characterization of FMDVs circulating in countries where the disease is endemic and thus enhance disease control globally.
Veterinary Immunology and Immunopathology | 2000
C.M Røntved; Kirsten Tjørnehøj; Birgitte Viuff; Lars Erik Larsen; Dale L. Godson; L. Rønsholt; Soren Alexandersen
Abstract Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves, of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor α (TNF-α) in the BAL fluids was detected and quantified by a capture ELISA. TNF-α was detected in 21 of the infected animals. The amount of TNF-α in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-α were detected on PID 6, maximum levels of TNF-α were reached on PID 7, and smaller amounts of TNF-α were seen on PID 8. The high levels of TNF-α appeared on the days where severe lung lesions and clinical signs were obvious and the amounts of BRSV-antigen were at their greatest. Although Pasteurellaceae were isolated from some of the BRSV-infected calves, calves treated with antibiotics before and through the whole period of the infection, as well as BRSV-infected calves free of bacteria reached the same level of TNF-α as animals from which bacteria were isolated from the lungs. It is concluded that significant quantities of TNF-α are produced in the lungs of the calves on PID 6–7 of BRSV infection. The involvement of TNF-α in the pathogenesis of, as well as the anti-viral immune response against, BRSV infection is discussed.